Construction of Anisotropic Hydrogel Based on Natural Plant Skeleton
-
摘要: 各向异性水凝胶因其有序、取向结构而表现出优异的功能性,在仿生肌肉、致动器、药物递送、柔性传感等领域具有极大的应用前景,然而,各向异性水凝胶的制备方法有待丰富和拓展。提出了基于植物骨架构建各向异性水凝胶的新思路:首先,利用光学显微镜、扫描电镜和低场核磁等表征方法,筛选蔬菜组织中各项异性的结构,确定胡萝卜芯为天然结构模板;接着,在天然骨架中引发聚丙烯酰胺水凝胶的原位聚合,以胡萝卜骨架为模板复合水凝胶,制得各向异性水凝胶;最后,结合扫描电镜和力学性能表征发现,以天然取向结构为模板能够简便地制备各向异性水凝胶,且该水凝胶在拉伸强度、断裂伸长率和压缩强度上均表现出显著的力学各向异性。Abstract: Biological tissues including muscles, cartilage and other human tissues have excellent mechanical anisotropy and electrical anisotropy due to their reasonable arrangement of microstructures. The anisotropic hydrogel has excellent function due to its ordered orientation structure, which shows great application prospects in biomimetic muscles, actuators, drug delivery, and flexible sensing. However, the methods to prepare anisotropic hydrogels are limited. Inspired by the anisotropic structure from nature products, we proposed a strategy to build anisotropic hydrogel based on plant skeleton. First, we observed and searched for anisotropic structures among diverse vegetables, and pre-treated them to obtain anisotropic skeleton. Furthermore, the cross-linking of polyacrylamide (PAM) within the anisotropic skeleton was in-situ initiated, resulting in a hybrid anisotropic hydrogel. The anisotropic hydrogel with plant skeleton and PAM hydrogel could be successfully constructed. A highly anisotropy in structure and mechanical property could be achieved. This work obtained a highly anisotropic hydrogel with a feasible method, and we hoped to shed new lights for a novel anisotropic hydrogel construction.
-
Key words:
- hydrogel /
- anisotropy /
- natural plant /
- skeleton
-
表 1 各向异性植物水凝胶的构建条件对比
Table 1. Comparison of construction conditions for obtaining the anisotropic hydrogels
w(AM) m(MBA)/m(AM) T/
°Ct/
hResults 20% 0.5% 25 24 Hydrogel forming 20% 0.5% 45 2 Hydrogel forming 20% 0.5% 60 2 Natural skeleton destroyed 25% 0.5% 25 24 Hydrogel forming 25% 0.5% 45 2 Hydrogel forming 25% 0.5% 60 2 Natural skeleton destroyed 30% 0.5% 25 24 Hydrogel forming 30% 0.5% 45 2 Implosion 30% 0.5% 60 2 Natural skeleton destroyed 40% 0.5% 25 24 Hydrogel with bubbles 40% 0.5% 45 2 Hydrogel with bubbles 40% 0.5% 60 2 Implosion -
[1] MA C, LE X, TANG X, et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations [J]. Advanced Functional Materials,2016,26(47):8670-8676. doi: 10.1002/adfm.201603448 [2] KIM Y S, LIU M, ISHIDA Y, et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel [J]. Nature Materials,2015,14(10):1002-1007. doi: 10.1038/nmat4363 [3] SANO K, ISHIDA Y, AIDA T. Synthesis of anisotropic hydrogels and their applications [J]. Angewandte Chemie International Edition,2018,57(10):2532-2543. doi: 10.1002/anie.201708196 [4] YE D, YANG P, LEI X, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth [J]. Chemistry of Materials,2018,30(15):5175-5183. doi: 10.1021/acs.chemmater.8b01799 [5] de FRANCE K J, YAGER K G, CHAN K J W, et al. Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes [J]. Nano Letters,2017,17(10):6487-6495. doi: 10.1021/acs.nanolett.7b03600 [6] ZHU Q L, DAI C F, WAGNER D, et al. Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations [J]. Advanced Materials,2020,32(47):2005567. doi: 10.1002/adma.202005567 [7] MREDHA M T I, KITAMURA N, NONOYAMA T, et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone [J]. Biomaterials,2017,132:85-95. doi: 10.1016/j.biomaterials.2017.04.005 [8] WANG D, XU H, LIU J, et al. Bio-inspired cellulose reinforced anisotropic composite hydrogel with zone-dependent complex mechanical adaptability and cell recruitment characteristics [J]. Composites Part B: Engineering,2020,202:108418. [9] LIU K, HAN L, TANG P, et al. An anisotropic hydrogel based on mussel-inspired conductive ferrofluid composed of electromagnetic nanohybrids [J]. Nano Letters,2019,19(12):8343-8356. doi: 10.1021/acs.nanolett.9b00363 [10] SUN Z, YAMAUCHI Y, ARAOKA F, et al. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling [J]. Angewandte Chemie International Edition,2018,57(48):15772-15776. doi: 10.1002/anie.201810052 [11] VELICHKO E V, BUYANOV A L, SAPRYKINA N N, et al. High-strength bacterial cellulose-polyacrylamide hydrogels: Mesostructure anisotropy as studied by spin-echo small-angle neutron scattering and cryo-SEM [J]. European Polymer Journal,2017,88:269-279. doi: 10.1016/j.eurpolymj.2017.01.034 [12] WANG Y, SHANG L, CHEN G, et al. Bioinspired structural color patch with anisotropic surface adhesion [J]. Science Advances,2020,6(4):eaax8258. doi: 10.1126/sciadv.aax8258 [13] 杨海鹏, 张幼维, 赵炯心. P(MAA-co-AM)纳米水凝胶的制备与表征 [J]. 功能高分子学报,2018,31(5):486-492.YANG H P, ZHANG Y W, ZHAO J X. Preparation and characterization of P(MAA-co-AM) nanogels [J]. Journal of Functional Polymers,2018,31(5):486-492. [14] 刘瑞雪, 李义梦, 李迎博, 等. 银离子对结冷胶/聚丙烯酰胺双网络水凝胶的增强作用 [J]. 功能高分子学报,2019,32(3):353-359.LIU R X, LI Y M, LI Y B, et al. Enhancement effect of gellan gum/polyacrylamide double network hydrogel by silver ion [J]. Journal of Functional Polymers,2019,32(3):353-359. -