高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于天然植物骨架构建各向异性水凝胶

袁浩田 金鑫 姚远 林绍梁 朱新远

袁浩田, 金 鑫, 姚 远, 等. 基于天然植物骨架构建各向异性水凝胶[J]. 功能高分子学报,2022,35(2):180-187 doi: 10.14133/j.cnki.1008-9357.20210527002
引用本文: 袁浩田, 金 鑫, 姚 远, 等. 基于天然植物骨架构建各向异性水凝胶[J]. 功能高分子学报,2022,35(2):180-187 doi: 10.14133/j.cnki.1008-9357.20210527002
YUAN Haotian, JIN Xin, YAO Yuan, LIN Shaoliang, ZHU Xinyuan. Construction of Anisotropic Hydrogel Based on Natural Plant Skeleton[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210527002
Citation: YUAN Haotian, JIN Xin, YAO Yuan, LIN Shaoliang, ZHU Xinyuan. Construction of Anisotropic Hydrogel Based on Natural Plant Skeleton[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210527002

基于天然植物骨架构建各向异性水凝胶

doi: 10.14133/j.cnki.1008-9357.20210527002
基金项目: 上海市重大基础研究(18JC1410800);国家自然科学基金(51873106)
详细信息
    作者简介:

    袁浩田(1995—),男,硕士生,主要研究方向为各向异性水凝胶材料

    通讯作者:

    金 鑫, E-mail:jxcindy@sjtu.edu.cn

  • 中图分类号: O63

Construction of Anisotropic Hydrogel Based on Natural Plant Skeleton

  • 摘要: 各向异性水凝胶因其有序、取向结构而表现出优异的功能性,在仿生肌肉、致动器、药物递送、柔性传感等领域具有极大的应用前景,然而,各向异性水凝胶的制备方法有待丰富和拓展。提出了基于植物骨架构建各向异性水凝胶的新思路:首先,利用光学显微镜、扫描电镜和低场核磁等表征方法,筛选蔬菜组织中各项异性的结构,确定胡萝卜芯为天然结构模板;接着,在天然骨架中引发聚丙烯酰胺水凝胶的原位聚合,以胡萝卜骨架为模板复合水凝胶,制得各向异性水凝胶;最后,结合扫描电镜和力学性能表征发现,以天然取向结构为模板能够简便地制备各向异性水凝胶,且该水凝胶在拉伸强度、断裂伸长率和压缩强度上均表现出显著的力学各向异性。

     

  • 图  1  利用胡萝卜、芹菜构筑各向异性水凝胶的示意图

    Figure  1.  Schematic diagram of the construction of anisotropic hydrogels using carrots and celeries

    图  2  胡萝卜样品的(a,b)光学显微镜细胞形态和(c,d)扫描电镜下的结构形貌

    Figure  2.  (a,b) Cell observation images under optical microscopes and (c,d) scanning electron micrographs of carrot samples

    a,c— Vertical growth direction; b,d—Parallel growth direction

    图  3  芹菜样品的(a,b)光学显微镜细胞形态和(c,d)扫描电镜下的结构形貌

    a,c— Vertical growth direction; b,d—Parallel growth direction

    Figure  3.  (a,b) Cell observation images under optical microscopes and (c,d) scanning electron micrographs of celery samples

    图  4  茄子、杏鲍菇和莴笋样品(a,b,c)在光学显微镜下的细胞形态和(d,e,f)扫描电镜下的结构形貌

    Figure  4.  (a,b,c) Cell observation images under optical microscopes and (d,e,f) scanning electron micrographs of eggplant, pleurotus eryngii and lettuce samples

    图  5  茄子、胡萝卜、芹菜、莴笋、杏鲍菇样品的低场核磁成像

    Figure  5.  Low-field NMR imaging of eggplant, carrot, celery, lettuce, and pleurotus eryngii samples

    图  6  胡萝卜、PAM水凝胶和胡萝卜复合PAM水凝胶的红外光谱

    Figure  6.  FT-IR spectra of carrot, PAM hydrogel and carrot gel

    图  7  (a,b)胡萝卜骨架和(c,d)胡萝卜复合PAM水凝胶的扫描电镜图

    a,c— Vertical growth direction; b,d—Parallel growth direction

    Figure  7.  Scanning electron micrograph of (a,b)carrot skeleton and (c,d) carrot gel

    图  8  (a)胡萝卜复合 PAM水凝胶,(b)PAM 水凝胶,(c)胡萝卜骨架的拉伸应力-应变曲线(L、R分别表示平行、垂直于生长方向)

    Figure  8.  Tensile stress-strain curves of (a) carrot gel, (b) PAM hydrogel and (c) carrot ( L and R stand for parallel and vertical directions, respectively)

    图  9  PAM水凝胶、胡萝卜复合PAM水凝胶的压缩应力-应变曲线(L、R分别表示平行、垂直于生长方向)

    Figure  9.  Compression stress-strain curves of PAM hydrogel and carrot gel (L and R stand for parallel and vertical directions, respectively)

    表  1  各向异性植物水凝胶的构建条件对比

    Table  1.   Comparison of construction conditions for obtaining the anisotropic hydrogels

    w(AM)m(MBA)/m(AM)T/
    °C
    t/
    h
    Results
    20%0.5%2524Hydrogel forming
    20%0.5%452Hydrogel forming
    20%0.5%602Natural skeleton destroyed
    25%0.5%2524Hydrogel forming
    25%0.5%452Hydrogel forming
    25%0.5%602Natural skeleton destroyed
    30%0.5%2524Hydrogel forming
    30%0.5%452Implosion
    30%0.5%602Natural skeleton destroyed
    40%0.5%2524Hydrogel with bubbles
    40%0.5%452Hydrogel with bubbles
    40%0.5%602Implosion
    下载: 导出CSV
  • [1] MA C, LE X, TANG X, et al. A multiresponsive anisotropic hydrogel with macroscopic 3D complex deformations [J]. Advanced Functional Materials,2016,26(47):8670-8676. doi: 10.1002/adfm.201603448
    [2] KIM Y S, LIU M, ISHIDA Y, et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel [J]. Nature Materials,2015,14(10):1002-1007. doi: 10.1038/nmat4363
    [3] SANO K, ISHIDA Y, AIDA T. Synthesis of anisotropic hydrogels and their applications [J]. Angewandte Chemie International Edition,2018,57(10):2532-2543. doi: 10.1002/anie.201708196
    [4] YE D, YANG P, LEI X, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth [J]. Chemistry of Materials,2018,30(15):5175-5183. doi: 10.1021/acs.chemmater.8b01799
    [5] de FRANCE K J, YAGER K G, CHAN K J W, et al. Injectable anisotropic nanocomposite hydrogels direct in situ growth and alignment of myotubes [J]. Nano Letters,2017,17(10):6487-6495. doi: 10.1021/acs.nanolett.7b03600
    [6] ZHU Q L, DAI C F, WAGNER D, et al. Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations [J]. Advanced Materials,2020,32(47):2005567. doi: 10.1002/adma.202005567
    [7] MREDHA M T I, KITAMURA N, NONOYAMA T, et al. Anisotropic tough double network hydrogel from fish collagen and its spontaneous in vivo bonding to bone [J]. Biomaterials,2017,132:85-95. doi: 10.1016/j.biomaterials.2017.04.005
    [8] WANG D, XU H, LIU J, et al. Bio-inspired cellulose reinforced anisotropic composite hydrogel with zone-dependent complex mechanical adaptability and cell recruitment characteristics [J]. Composites Part B: Engineering,2020,202:108418.
    [9] LIU K, HAN L, TANG P, et al. An anisotropic hydrogel based on mussel-inspired conductive ferrofluid composed of electromagnetic nanohybrids [J]. Nano Letters,2019,19(12):8343-8356. doi: 10.1021/acs.nanolett.9b00363
    [10] SUN Z, YAMAUCHI Y, ARAOKA F, et al. An anisotropic hydrogel actuator enabling earthworm-like directed peristaltic crawling [J]. Angewandte Chemie International Edition,2018,57(48):15772-15776. doi: 10.1002/anie.201810052
    [11] VELICHKO E V, BUYANOV A L, SAPRYKINA N N, et al. High-strength bacterial cellulose-polyacrylamide hydrogels: Mesostructure anisotropy as studied by spin-echo small-angle neutron scattering and cryo-SEM [J]. European Polymer Journal,2017,88:269-279. doi: 10.1016/j.eurpolymj.2017.01.034
    [12] WANG Y, SHANG L, CHEN G, et al. Bioinspired structural color patch with anisotropic surface adhesion [J]. Science Advances,2020,6(4):eaax8258. doi: 10.1126/sciadv.aax8258
    [13] 杨海鹏, 张幼维, 赵炯心. P(MAA-co-AM)纳米水凝胶的制备与表征 [J]. 功能高分子学报,2018,31(5):486-492.

    YANG H P, ZHANG Y W, ZHAO J X. Preparation and characterization of P(MAA-co-AM) nanogels [J]. Journal of Functional Polymers,2018,31(5):486-492.
    [14] 刘瑞雪, 李义梦, 李迎博, 等. 银离子对结冷胶/聚丙烯酰胺双网络水凝胶的增强作用 [J]. 功能高分子学报,2019,32(3):353-359.

    LIU R X, LI Y M, LI Y B, et al. Enhancement effect of gellan gum/polyacrylamide double network hydrogel by silver ion [J]. Journal of Functional Polymers,2019,32(3):353-359.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  77
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 网络出版日期:  2021-11-02

目录

    /

    返回文章
    返回