高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光固化3D打印技术及光敏树脂的开发与应用

王世崇 朱雨薇 吴瑶 向洪平 刘晓暄 彭忠泉 容敏智 章明秋

王世崇, 朱雨薇, 吴瑶, 向洪平, 刘晓暄, 彭忠泉, 容敏智, 章明秋. 光固化3D打印技术及光敏树脂的开发与应用[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210510001
引用本文: 王世崇, 朱雨薇, 吴瑶, 向洪平, 刘晓暄, 彭忠泉, 容敏智, 章明秋. 光固化3D打印技术及光敏树脂的开发与应用[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210510001
WANG Shichong, ZHU Yuwei, WU Yao, XIANG Hongping, LIU Xiaoxuan, PENG Zhongquan, RONG Minzhi, ZHANG Mingqiu. Development and Applications of UV-Curing 3D Printing and Photosensitive Resin[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210510001
Citation: WANG Shichong, ZHU Yuwei, WU Yao, XIANG Hongping, LIU Xiaoxuan, PENG Zhongquan, RONG Minzhi, ZHANG Mingqiu. Development and Applications of UV-Curing 3D Printing and Photosensitive Resin[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210510001

光固化3D打印技术及光敏树脂的开发与应用

doi: 10.14133/j.cnki.1008-9357.20210510001
基金项目: 国家自然科学基金面上项目(51873043); 广东省重点领域研发计划项目(2020B090924001)
详细信息
    作者简介:

    王世崇(1997-),男,海南澄迈人,硕士生,主要从事3D打印用光敏树脂研究。E-mail:Wang17368085312@163.com

    通讯作者:

    向洪平,E-mail:xianghongping@gdut.edu.cn

  • 中图分类号: TQ32

Development and Applications of UV-Curing 3D Printing and Photosensitive Resin

  • 摘要: 光固化3D打印技术因速度快、精度高、环境友好等优势,已成为一类广泛应用的快速成型工艺。光敏树脂作为光固化3D打印的主体材料,对器件的性能与应用有着决定性影响。本文先介绍了几种已普及和新开发的光固化3D打印的成型原理;并对光敏树脂的组成、分子结构和器件性能间的构-效关系进行了分析;进而对光固化3D打印及树脂的应用进行分类介绍;最后对光固化3D打印与光敏树脂的未来发展进行了分析与展望。

     

  • 图  1  光固化3D打印及光聚合体系[12]

    Figure  1.  Schematic of UV-curing 3D printing technologies and the photopolymerization[12]

    图  2  SLA工作原理示意图[13]

    Figure  2.  Schematic diagram of SLA[13]

    图  3  DLP工作原理示意图[13]

    Figure  3.  Schematic diagram of DLP[13]

    图  4  CLIP工作原理示意图[17]

    Figure  4.  Schematic diagram of CLIP[17]

    图  5  MJP工作原理示意图[20]

    Figure  5.  Schematic diagram of MJP[20]

    图  6  TPP工作原理示意图[22, 23]

    Figure  6.  Schematic diagram of TPP [22, 23]

    图  7  LCD工作原理示意图[25]

    Figure  7.  Schematic diagram of LCD[25]

    图  8  VAM工作原理示意图[28]

    Figure  8.  Schematic diagram of VAM[28]

    图  9  连续单墨滴3D打印示意图[29]

    Figure  9.  Schematic diagram of continuous one-droplet 3D printing process

    图  10  HARP工作原理示意图[30]

    Figure  10.  Schematic diagram of HARP[30]

    图  11  VPIP工作原理示意图[31]

    Figure  11.  Schematic diagram of VPIP[31]

    图  12  交叉光束3D打印技术工作原理示意图[32]

    Figure  12.  Schematic diagram of cross-beam 3D printing technology[32]

    图  13  自由基–阳离子杂化光敏树脂中互穿网络的形成示意图[65]

    Figure  13.  Interpenetrating network in free-radical/cationic hybrid photosensitive resin[65]

    图  14  三组分G1 /碘鎓盐/ N-乙烯基咔唑体系的光氧化还原催化和LED 3D打印实验[68]

    Figure  14.  Three-component G1/Iodonium salt/N-vinylcarbazole catalyst and LED 3D printing[68]

    图  15  (a)手工模型与 (b)发动机设计验证

    Figure  15.  (a) Manual models and (b) engine design verification

    图  16  工业制品模型

    Figure  16.  Printed models of industrial products

    图  17  3D打印鞋材

    Figure  17.  3D Printed soles

    图  18  3D打印 (a)心脏模型; (b)畸齿矫正模型及其产品; (c)医用拭子; (d)医用面罩

    Figure  18.  3D printed (a) heart model, (b) orthodontic model, (c) medical swab and (d) medical facemask

    表  1  不同光固化3D打印技术的比较[12, 19, 27]

    Table  1.   Comparison of various popular UV-curing 3D printing technologies[12, 19, 27]

    NameUV-curing mechanismAdvantageDisadvantageApplication
    SLAFree radical and hybrid curingMature technology, form large
    size device
    Slow curing speedDentistry, mold, automobile
    DLPFree radical curingFast curing rate, high precisionForm small size deviceMedical care, jewelry, education
    CLIPFree radical and thermocuringExtremely fast curing speedExpensive resin and equipmentSports, cars
    MJPFree radical and hybrid curingHigh precision, colourfulnessExpensive equipmentConsumer goods, medical care, jewelry
    TPPFree radical curingExtremely high precisionExpensive equipment, complex processMicroelectronics, art, scientific research
    LCDFree radical curingFast curing speed, low costShort service lifeJewelry, mold manufacturing
    下载: 导出CSV

    表  2  各类光敏预聚物的性能

    Table  2.   Properties of various photosensitive prepolymers

    PrepolymersCuring
    rate
    Tensile
    strength
    FlexibilityAdhesionAnti-yellowingChemical resistance
    Epoxy acrylateFastHighPoorMediumGoodExcellent
    Polyurethane acrylateFastAdjustableGoodAdjustableAdjustableGood
    Unsaturated polyesterSlowHighPoorGoodPoorPoor
    Acrylate resinFastLowGoodExcellentExcellentPoor
    Polyester acrylateAdjustableMediumAdjustableGoodPoorGood
    Polyether acrylateAdjustableLowGoodGoodGoodPoor
    下载: 导出CSV
  • [1] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D printing and customized additive manufacturing [J]. Chemical Reviews,2017,117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074
    [2] WU H, FAHY W, KIM S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing [J]. Progress in Materials Science,2020,11:100638.
    [3] GONZALEZ-HENRIQUEZ C M, SARABIA-VALLEJOS M A, HERNANDEZ R J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications [J]. Progress in Polymer Science,2019,94:57-116. doi: 10.1016/j.progpolymsci.2019.03.001
    [4] WU J J, HUANG L M, ZHAO Q, et al. 4D Printing: History and recent progress [J]. Chinese Journal of Polymer Science,2018,36:563-575. doi: 10.1007/s10118-018-2089-8
    [5] JUNGST T, SMOLAN W, SCHACHT K, et al. Strategies and molecular design criteria for 3D printable hydrogels [J]. Chemistry Reviews,2016,116(3):1496-1539. doi: 10.1021/acs.chemrev.5b00303
    [6] CHACON J M, CAMINERO M A, GARCIA P E, et al. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection [J]. Materials & Design,2017,124:143-157.
    [7] OLAKANMI E O, COCHRANE R F, DALGARNO K W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties [J]. Progress in Materials Science,2015,74:401-477. doi: 10.1016/j.pmatsci.2015.03.002
    [8] UTELA B, STORTI D, ANDERSON R, et al. A review of process development steps for new material systems in three dimensional printing (3DP) [J]. Journal of Manufacturing Processes,2008,10(2):96-104. doi: 10.1016/j.jmapro.2009.03.002
    [9] PARANDOUSH P, LIN D. A review on additive manufacturing of polymer-fiber composites [J]. Composite Structures,2017,182:36-53. doi: 10.1016/j.compstruct.2017.08.088
    [10] CAPEL A J, RIMINGTON R P, LEWIS M P, et al. 3D printing for chemical, pharmaceutical and biological applications [J]. Nature Reviews Chemistry,2018,2:422-436. doi: 10.1038/s41570-018-0058-y
    [11] 何岷洪, 宋坤, 莫宏斌, 等. 3D打印光敏树脂的研究进展 [J]. 功能高分子学报,2015,28(1):102-108.

    HE M H, SONG K, MO H B, et al. Progress on photosensitive resins for 3D printing [J]. Journal of Functional Polymers,2015,28(1):102-108.
    [12] BAGHERI A, JIN J. Photopolymerization in 3D printing [J]. ACS Applied Polymer Materials,2019,1(4):593-611. doi: 10.1021/acsapm.8b00165
    [13] BILLIET T, VANDENHAUTE M, SCHELFHOUT J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering [J]. Biomaterials,2012,33(26):6020-6041. doi: 10.1016/j.biomaterials.2012.04.050
    [14] HUANG J, QIN Q, WANG J. A review of stereolithography: Processes and systems [J]. Processes,2020,8(9):1138. doi: 10.3390/pr8091138
    [15] NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges [J]. Composites Part B: Engineering,2018,143:172-196. doi: 10.1016/j.compositesb.2018.02.012
    [16] DENG S, WU J, DICKEY M D, et al. Rapid open-air digital light 3D printing of thermoplastic polymer [J]. Advanced Materials,2019,31(39):1903970. doi: 10.1002/adma.201903970
    [17] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Additive manufacturing: Continuous liquid interface production of 3D objects [J]. Science,2015,347(6228):1349-1352. doi: 10.1126/science.aaa2397
    [18] HU R, HUANG B, XUE Z, et al. Synthesis of photocurable cellulose acetate butyrate resin for continuous liquid interface production of three-dimensional objects with excellent mechanical and chemical-resistant properties [J]. Carbohydrate Polymers,2019,207:609-618. doi: 10.1016/j.carbpol.2018.12.026
    [19] QUAN H, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges [J]. Bioactive Materials,2020,5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
    [20] 刘海涛. 光固化三维打印成形材料的研究与应用[D]. 武汉: 华中科技大学, 2009.

    LIU H T. Study on the Processing Materials of UV-curing Three-dimensional Printing[D]. Wuhan: Huazhong University of Science and Technology, 2009.
    [21] STANSBURY J W, IDACAVAGE M J. 3D printing with polymers: Challenges among expanding options and opportunities [J]. Dental Materials,2016,32(1):54-64. doi: 10.1016/j.dental.2015.09.018
    [22] WINFIELD R J, O’BRIEN S. Two-photon polymerization of an epoxy-acrylate resin material system [J]. Applied Surface Science,2011,257(12):5389-5392. doi: 10.1016/j.apsusc.2010.10.044
    [23] KWANG S L, HEE K R, YANG D, et al. Advances in 3D nano/microfabrication using two-photon initiated polymerization [J]. Progress in Polymer Science,2008,33(6):631-681. doi: 10.1016/j.progpolymsci.2008.01.001
    [24] GISSIBL T, THIELE S, HERKOMMER A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives [J]. Nature Photonics,2016,10(8):554-560. doi: 10.1038/nphoton.2016.121
    [25] XENIKAKIS I, TSONGAS K, TZIMTZIMIS E K, et al. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery [J]. International Journal of Pharmaceutics,2021,597:120303. doi: 10.1016/j.ijpharm.2021.120303
    [26] WANG Z, MARTIN N, DELATOR H, et al. Rapid fabrication of multilayer microfluidic devices using the liquid crystal display-based stereolithography 3D printing system [J]. 3D Printing and Additive Manufacturing,2017,4(3):156-164. doi: 10.1089/3dp.2017.0028
    [27] NG W L, LEE J M, ZHOU M, et al. Vat polymerization-based bioprinting-process, materials, applications and regulatory challenges [J]. Biofabrication,2020,12:022001. doi: 10.1088/1758-5090/ab6034
    [28] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction [J]. Science,2019,363(6431):1075-1079. doi: 10.1126/science.aau7114
    [29] ZHANG Y, DONG Z, LI C, et al. Continuous 3D printing from one single droplet [J]. Nature Communications,2020,11(1):4685. doi: 10.1038/s41467-020-18518-1
    [30] WALKER D A, HEDRICK J L, MIRKIN C A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface [J]. Science,2019,366(6463):360-364. doi: 10.1126/science.aax1562
    [31] DE BEER M P, VAN DER LAAN H L, COLE M A, et al. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning [J]. Science Advances,2019,5(1):eaau8723. doi: 10.1126/sciadv.aau8723
    [32] REGEHLY M, GARMSHAUSEN Y, REUTER M, et al. Xolography for linear volumetric 3D printing [J]. Nature,2020,588(7839):620-624. doi: 10.1038/s41586-020-3029-7
    [33] DOS SANTOS M N, OPELT C V, LAFRATTA F H, et al. Thermal and mechanical properties of a nanocomposite of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes [J]. Materials Science and Engineering: A,2011,528(13):4318-4324.
    [34] SHEN L, LI Y, ZHENG J, et al. Modified epoxy acrylate resin for photocurable temporary protective coatings [J]. Progress in Organic Coatings,2015,89:17-25. doi: 10.1016/j.porgcoat.2015.07.022
    [35] PENG S, WANG Z, LIN J, et al. Tailored and highly stretchable sensor prepared by crosslinking an enhanced 3D printed UV-curable sacrificial mold [J]. Advanced Functional Materials,2021,31(10):2008729. doi: 10.1002/adfm.202008729
    [36] DAI J, MA, LIU X, et al. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings [J]. Progress in Organic Coatings,2015,78:‏49-54. doi: 10.1016/j.porgcoat.2014.10.007
    [37] BADEV A, ABOULIATIM Y, CHARTIER T, et al. Photopolymerization kinetics of a polyether acrylate in the presence of ceramic fillers used in stereolithography [J]. Journal of Photochemistry and Photobiology A: Chemistry,2011,222(1):117-122. doi: 10.1016/j.jphotochem.2011.05.010
    [38] MOHTADIZADEH F, ZOHURIAAN M J, SHIRKAVAND H B, et al. Tetra-functional epoxy-acrylate as crosslinker for UV curable resins: Synthesis, spectral, and thermo-mechanical studies [J]. Progress in Organic Coatings,2015,89:231-239. doi: 10.1016/j.porgcoat.2015.09.002
    [39] ZHONG Z R, CHEN Y N, ZHOU Y, et al. Challenges and recent developments of photoflow-reversible deactivation radical polymerization (RDRP)[J/OL]. Chinese Journal of Polymer Science, 2021, https://doi.org/10.1007/s10118-021-2529-8.
    [40] XU Y, LUO J, LIU X, et al. Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit [J]. Progress in Organic Coatings,2020,141:105543. doi: 10.1016/j.porgcoat.2020.105543
    [41] WANG Y, LI C, TUO X, et al. Polyethylene glycol modified epoxy acrylate UV curable 3D printing materials [J]. Journal of Applied Polymer Science,2021,138(13):50102. doi: 10.1002/app.50102
    [42] XIANG H, WANG X, XI L, et al. Effect of soft chain length and generation number on properties of flexible hyperbranched polyurethane acrylate and its UV-cured film [J]. Progress in Organic Coatings,2018,114:216-222. doi: 10.1016/j.porgcoat.2017.10.019
    [43] XIANG H, WANG X, LIN G, et al. Preparation, characterization and application of UV-curable flexible hyperbranched polyurethane acrylate [J]. Polymers,2017,9(11):552.
    [44] LI S, CUI Y, LI J. Thiol-terminated hyperbranched polymer for DLP 3D printing: Performance evaluation of a low shrinkage photosensitive resin [J]. Journal of Applied Polymer Science,2021,138:e50525. doi: 10.1002/app.50525
    [45] CHEN F, LI R, SUN J, et al. Photo-curing 3D printing robust elastomers with ultralow viscosity resin [J]. Journal of Applied Polymer Science,2021,138:e49965. doi: 10.1002/app.49965
    [46] DIMITROV S D, DURRANT J R. Photopolymer materials and processes for advanced technologies [J]. Chemistry of Materials,2014,26(1):533-548. doi: 10.1021/cm402262g
    [47] 宋彩雨, 王磊, 张斌, 等. 降低光固化收缩的研究进展 [J]. 高分子材料科学与工程,2017,33(10):175-182.

    SONG C Y, WANG L, ZHANG B, et al. Progress on decreasing shrinkage of photopolymerization [J]. Polymer Materials Science and Engineering,2017,33(10):175-182.
    [48] ZAK G, CHAN A Y F, PARK C B, et al. Viscosity analysis of photopolymer and glass-fibre composites for rapid layered manufacturing [J]. Rapid Prototyping Journal,1996,2(3):16-23. doi: 10.1108/13552549610129773
    [49] 段玉岗, 王素琴, 李涤尘, 等. SL法用光固化树脂中聚合物填充剂对收缩性影响研究 [J]. 材料科学与工程,2001,19(2):39-42.

    DUAN Y G, WANG S Q, LI D C, et al. Shrinkage effects in photopolymerizable resin containing polymer filler for SL [J]. Materials Science and Engineering,2001,19(2):39-42.
    [50] ORTIZ R A, VALDEZ A E G, FLORES R A, et al. Synthesis of a novel highly hindered spiroorthocarbonate and the study of its efficiency to eliminate the shrinkage in the photopolymerization of an epoxycycloaliphatic resin [J]. Journal of Polymer Research,2015,22:163. doi: 10.1007/s10965-015-0814-3
    [51] HINO T, ENDO T. A novel synthetic approach to networked polymers without volume shrinkage on cross-linking polymerization:   Cationic copolymerization of a monofunctional epoxide and a spiro orthocarbonate bearing norbornene backbone [J]. Macromolecules,2003,36(16):5902-5904. doi: 10.1021/ma030136s
    [52] 翟媛萍. 光固化快速成型材料的研究与应用[D]. 南京: 南京理工大学, 2004.

    ZHAI Y P. Study and application of material in stereolithography[D]. Nanjing: Nanjing University of Science and Technology, 2004.
    [53] SCOTT T F, SCHNEIDER A D, COOK W D, et al. Photoinduced plasticity in cross-linked polymers [J]. Science,2005,308(5728):1615-1617. doi: 10.1126/science.1110505
    [54] SEIDLER K, GRIESSER M, KURY M, et al. Vinyl sulfonate esters: Efficient chain transfer agents for the 3D printing of tough photopolymers without retardation [J]. Angewandte Chemie International Edition,2018,57(29):9165-9169. doi: 10.1002/anie.201803747
    [55] MENG Y, FENOLI C R, AGUIRRE-SOTO A, et al. Photoinduced diffusion through polymer networks[J]. Advanced Materials 2014, 26(37): 6497-6502.
    [56] ZHOU Z, LI Y, ZHONG J, et al. High-performance cyanate ester resins with interpenetration networks for 3D printing [J]. ACS Applied Materials & Interfaces,2020,12(34):38682-38689.
    [57] WEIGAND J J, MILLER C I, JANISSE A P, et al. 3D printing of dual-cure benzoxazine networks [J]. Polymer,2020,189:122193. doi: 10.1016/j.polymer.2020.122193
    [58] LIU Y, LIN Y, JIAO T, et al. Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing [J]. Polymer Chemistry,2019,10(46):6350-6359. doi: 10.1039/C9PY01445D
    [59] LI Y, ZHONG J, WU L, et al. High performance POSS filled nanocomposites prepared via UV-curing based on 3D stereolithography printing [J]. Composites Part A: Applied Science and Manufacturing,2019,117:276-286. doi: 10.1016/j.compositesa.2018.11.024
    [60] SHI S, CROUTXÉ-BARGHORN C, ALLONAS X. Photoinitiating systems for cationic photopolymerization: Ongoing push toward long wavelengths and low light intensities [J]. Progress in Polymer Science,2017,65:1-41. doi: 10.1016/j.progpolymsci.2016.09.007
    [61] LIU S, ZHANG Y, SUN K, et al. Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing [J]. European Polymer Journal,2021,147:110300. doi: 10.1016/j.eurpolymj.2021.110300
    [62] DALL’ARGINE C, HOCHWALLNER A, KLIKOVITS N, et al. Hot-lithography SLA-3D printing of epoxy resin [J]. Macromolecular Materials and Engineering,2020,305:2000325. doi: 10.1002/mame.202000325
    [63] HUANG B, WU B, HAN L, et al. Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties [J]. Journal of Wuhan University of Technology: Materials Science,2019,34(4):761-768. doi: 10.1007/s11595-019-2114-y
    [64] 林广鸿, 尹敬峰, 黄鸿, 等. 混杂光固化3D打印树脂固化动力学性能 [J]. 材料工程,2019,47(12):143-150. doi: 10.11868/j.issn.1001-4381.2018.000667

    LIN G H, YIN J F, HUNAG H, et al. Photocuring kinetics properties of hybrid UV-curing resin for 3D printing [J]. Journal of Materials Engineering,2019,47(12):143-150. doi: 10.11868/j.issn.1001-4381.2018.000667
    [65] YANG Z, SHAN J, HUANG Y, et al. Preparation and mechanism of free-radical/cationic hybrid photosensitive resin with high tensile strength for three-dimensional printing applications [J]. Journal of Applied Polymer Science,2021,138(8):49881. doi: 10.1002/app.49881
    [66] MAU A, DIETLIN C, DUMUR F, et al. Concomitant initiation of radical and cationic polymerisations using new copper complexes as photoinitiators: Synthesis and characterisation of acrylate/epoxy interpenetrated polymer networks [J]. European Polymer Journal,2021,152:110457. doi: 10.1016/j.eurpolymj.2021.110457
    [67] HUANG B, DU Z, YONG T, et al. Preparation of a novel hybrid type photosensitive resin for stereolithography in 3D printing and testing on the accuracy of the fabricated parts [J]. Journal of Wuhan University of Technology: Materials Science,2017,32:726-732. doi: 10.1007/s11595-017-1659-x
    [68] MOKBEL H, ANDERSON D, PLENDERLEITH R, et al. Simultaneous initiation of radical and cationic polymerization reactions using the “G1” copper complex as photoredox catalyst: Applications of free radical/cationic hybrid photopolymerization in the composites and 3D printing fields [J]. Progress in Organic Coatings,2019,132:50-61. doi: 10.1016/j.porgcoat.2019.02.044
    [69] ZHAO T, YU R, HUANG W, et al. Aliphatic silicone-epoxy based hybrid photopolymers applied in stereolithography 3D printing [J]. Polymers Advanced Technologies,2020,32(3):980-987.
    [70] HUANG B, HAN L, WU B, et al. Application of bis[2-(3, 4-epoxycyclohexyl)ethyl] octamethyltetrasiloxane in the preparation of a photosensitive resin for stereolithography 3D printing [J]. Journal of Wuhan University of Technology: Materials Science,2019,34(6):1470-1478. doi: 10.1007/s11595-019-2215-7
    [71] HUANG B, HAN L, WU B, et al. Synthesis of diepoxycyclohexylethyl tetramethyldisiloxane and its application to stereolithography 3D printing [J]. Rapid Prototyping Journal,2020,26(9):1515-1524. doi: 10.1108/RPJ-08-2019-0233
    [72] LI S, SUN D, LI A, et al. Study on curing shrinkage and mechanism of DHOM-modified epoxy-acrylate-based UV-curing 3D printing materials [J]. Journal of Applied Polymer Science,2020,138(7):49859.
    [73] ABDALLAH M, LE H, HIJAZI A, et al. Acridone derivatives as high performance visible light photoinitiators for cationic and radical photosensitive resins for 3D printing technology and for low migration photopolymer property [J]. Polymer,2018,159:47-58. doi: 10.1016/j.polymer.2018.11.021
    [74] ABDALLAH M, HIJAZI A, GRAFF B, et al. Coumarin derivatives as versatile photoinitiators for 3D printing, polymerization in water and photocomposite synthesis [J]. Polymer Chemistry,2019,10:872-88494. doi: 10.1039/C8PY01708E
    [75] SHAN J, YANG Z, CHEN G, et al. Design and synthesis of free-radical/cationic photosensitive resin applied for 3D printer with liquid crystal display (LCD) irradiation [J]. Polymers,2020,12(6):1346. doi: 10.3390/polym12061346
    [76] LIU Z, HONG P, HUANG Z, et al. Self-healing, reprocessing and 3D printing of transparent and hydrolysis resistant silicone elastomers [J]. Chemical Engineering Journal,2020,387:124142. doi: 10.1016/j.cej.2020.124142
    [77] XIANG H P, WANG X W, OU Z R, et al. UV-curable, 3D printable and biocompatible silicone elastomers [J]. Progress in Organic Coatings,2019,137:105372. doi: 10.1016/j.porgcoat.2019.105372
    [78] 刘珠, 洪鹏, 向洪平, 等. 双交联网络有机硅弹性体的制备及其自修复性能研究 [J]. 高分子学报,2020(6):656-669. doi: 10.11777/j.issn1000-3304.2019.19207

    LIU Z, HOMG P, XIANG H P, et al. Preparation and self-healability of silicone elastomer with dual-crosslinked network [J]. Acta Polymerica Sinica,2020(6):656-669. doi: 10.11777/j.issn1000-3304.2019.19207
    [79] LIGON S C, HUSAR B, WUTZEL H, et al. Strategies to reduce oxygen inhibition in photoinduced polymerization [J]. Chemical Reviews,2014,114(1):557-589. doi: 10.1021/cr3005197
    [80] RADL S V, SCHIPFER C, KAISER S, et al. Photo-responsive thiol-ene networks for the design of switchable polymer patterns [J]. Polymer Chemistry,2017,8(9):1562-1572. doi: 10.1039/C7PY00055C
    [81] WEEMS A C, CHIAIE K R D, WORCH J C, et al. Terpene- and terpenoid-based polymeric resins for stereolithography 3D printing [J]. Polymer Chemistry,2019,10:5959-5966. doi: 10.1039/C9PY00950G
    [82] CHILDRESS K K, ALIM M D, HERNANDEZ J J, et al. Additive manufacture of lightly crosslinked semicrystalline thiol-enes for enhanced mechanical performance [J]. Polymer Chemistry,2020,11:39-46. doi: 10.1039/C9PY01452G
    [83] WALLIN T J, SIMONSEN L, PAN W, et al. 3D printable tough silicone double networks [J]. Nature Communications,2020,11:4000. doi: 10.1038/s41467-020-17816-y
    [84] ZHAO T, YU R, LI S, et al. Superstretchable and processable silicone elastomers by digital light processing 3D printing [J]. ACS Applied Materials & Interfaces,2019,11:14391-14398.
    [85] NGUYEN K D Q, MEGONE W V, KONG D, et al. Ultrafast diffusion-controlled thiol-ene based crosslinking of silicone elastomers with tailored mechanical properties for biomedical applications [J]. Polymer Chemistry,2016,7:5281-5293. doi: 10.1039/C6PY01134A
    [86] CHEN L, WU Q, WEI G, et al. Highly stable thiol-ene systems: From their structure-property relationship to DLP 3D printing [J]. Journal of Materials Chemistry C,2018,6(43):11561-11568. doi: 10.1039/C8TC03389G
    [87] EDLER M, MOSTEGEL F H, ROTH M, et al. Enhancing the stability of UV-curable thiol/vinyl carbonate resins [J]. Journal of Applied Polymer Science,2017,134(24):44934.
    [88] ESFANDIARI P, LIGON S C, LAGREF J J, et al. Efficient stabilization of thiol-ene formulations in radical photopolymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2013,51(20):4261-4266. doi: 10.1002/pola.26848
    [89] LI Q, ZHOU H, HOYLE C E. The effect of thiol and ene structures on thiol-ene networks: Photopolymerization, physical, mechanical and optical properties [J]. Polymer,2009,50(10):2237-2245. doi: 10.1016/j.polymer.2009.03.026
    [90] 贺超良, 汤朝晖, 田华雨, 等. 3D 打印技术制备生物医用高分子材料的研究进展 [J]. 高分子学报,2013(6):722-732.

    HE C L, TANG Z H, TIAN H Y, et al. Progress in the development of biomedical polymer materials fabricated by 3-Dimensional printing technology [J]. Acta Polymerica Sinica,2013(6):722-732.
    [91] OLADAPO B I, ISMAIL S O, AFOLALU T D, et al. Review on 3D printing: Fight against COVID-19 [J]. Materials Chemistry and Physics,2021,258:123943. doi: 10.1016/j.matchemphys.2020.123943
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  48
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-10
  • 网络出版日期:  2021-07-28

目录

    /

    返回文章
    返回