高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚噻吩的后修饰与光电性质

谢子益 单通 卫青云 钟洪亮

谢子益, 单通, 卫青云, 钟洪亮. 聚噻吩的后修饰与光电性质[J]. 功能高分子学报, 2021, 34(5): 425-433. doi: 10.14133/j.cnki.1008-9357.20210430001
引用本文: 谢子益, 单通, 卫青云, 钟洪亮. 聚噻吩的后修饰与光电性质[J]. 功能高分子学报, 2021, 34(5): 425-433. doi: 10.14133/j.cnki.1008-9357.20210430001
XIE Ziyi, SHAN Tong, WEI Qingyun, ZHONG Hongliang. Photoelectric Properties of Polythiophene Modified by Post-Polymerization Strategy[J]. Journal of Functional Polymers, 2021, 34(5): 425-433. doi: 10.14133/j.cnki.1008-9357.20210430001
Citation: XIE Ziyi, SHAN Tong, WEI Qingyun, ZHONG Hongliang. Photoelectric Properties of Polythiophene Modified by Post-Polymerization Strategy[J]. Journal of Functional Polymers, 2021, 34(5): 425-433. doi: 10.14133/j.cnki.1008-9357.20210430001

聚噻吩的后修饰与光电性质

doi: 10.14133/j.cnki.1008-9357.20210430001
基金项目: 国家自然科学基金(21604053)
详细信息
    作者简介:

    谢子益(1996—),男,硕士生,主要研究有机太阳能电池给体材料的设计和制备。E-mail:XZY0411@sjtu.edu.cn

    通讯作者:

    钟洪亮,E-mail:hlzhong@sjtu.edu.cn

  • 中图分类号: O633.5

Photoelectric Properties of Polythiophene Modified by Post-Polymerization Strategy

  • 摘要: 为了解决Kumada 催化剂转移缩聚(Kumada catalyst transfer polycondensation, KCTP)反应构建的聚噻吩材料结构单一、能级较高等问题,通过KCTP法成功实现了含有 4 个噻吩单元与硫醚侧链单体的聚合,构建了含有硫代烷基侧链的新型聚噻吩材料(PtTSBO),并通过控制氧化剂间氯过氧苯甲酸(m-CPBA)的用量和反应温度,将侧链上的硫醚选择性地氧化为亚砜或砜基,制备了含有亚砜或砜基的PtTSBO(PtTSOBO 或PtTSOOBO)。通过核磁共振氢(1H-NMR)谱、元素分析(EA)、紫外-可见分光(UV-Vis)光谱和电化学(CV)曲线对聚合物的结构、吸光和电学性能进行了表征,并对所制备的光伏器件进行了光电性质研究。结果表明,这种后修饰策略有效地将硫醚官能团转变为强吸电子基团,相比于 PtTSBO,聚合物 PtTSOBO 和PtTSOOBO 的能级显著降低,相应光伏器件的开路电压(Voc)得到了提升。

     

  • 图  1  PtTSBO、PtTSOBO、PtTSOOBO的合成路线

    Figure  1.  Synthetic route of PtTSBO、PtTSOBO and PtTSOOBO

    图  2  样品的1H-NMR谱图

    Figure  2.  1H-NMR spectra of samples

    图  3  PtTSBO、PtTSOBO和PtTSOOBO的(a)构型与(b)分子轨道示意图

    Figure  3.  (a) Schematic diagram of configuration and (b) molecular orbital of PtTSBO, PtTSOBO and PtTSOOBO

    图  4  聚合物在(a)氯仿溶液和(b)薄膜状态下的紫外-可见分光光谱

    Figure  4.  UV-Vis spectra of polymers in (a) chloroform solution and (b) film

    图  5  聚合物的(a)循环伏安曲线和(b)能级示意图

    Figure  5.  (a) Cyclic voltammetry curves and (b) schematic diagram of energy levels of polymers

    图  6  基于聚合物光伏器件的J-V曲线

    Figure  6.  J-V curves of devices based on the polymers

    图  7  最优条件下PtTSBO(a, d)、PtTSOBO(b, e)和PtTSOOBO(c, f)共混膜的AFM高度图(上)与相图(下)

    Figure  7.  AFM height (up) and phase (down) diagrams of blend films for PtTSBO (a, d), PtTSOBO (b, e) and PtTSOOBO (c, f) under optimal conditions

    表  1  聚合物的光学和电化学性质

    Table  1.   Optical and electrical properties of the polymers

    Sample $ {\varepsilon }_{\rm max}^{\rm sol} $ \normalsize/(L·mol−1·cm−1 $ {\lambda }_{\rm max}^{\rm sol} $ \normalsize/nm $ {\lambda }_{\rm max}^{\rm film} $ \normalsize/nmEHOMO/eVELUMO/eV $ {E}_{\rm g}^{\rm opt} $ \normalsize/eV
    PtTSBO1.37x105545619−5.04−3.171.87
    PtTSOBO1.71x105536546−5.56−3.631.90
    PtTSOOBO1.19x105456490−5.77−3.772.00
    下载: 导出CSV

    表  2  基于给体与O-IDTBR器件的光伏性能

    Table  2.   Photovolatic properties of devices based on donor:O-IDTBR

    DonorVoc/VJsc/(mA·cm−2FF/%PCE/%
    PtTSBO0.6913.4655.25.13
    PtTSOBO1.092.0130.90.68
    PtTSOOBO1.150.7516.60.15
    下载: 导出CSV
  • [1] CHEN J, CAO Y. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices [J]. Accounts of Chemical Research,2009,42(11):1709-1718. doi: 10.1021/ar900061z
    [2] 张志国, 陈祺. 向具有商业化前景的光伏材料迈进: 一类低成本高效率的聚合物给体材料 [J]. 功能高分子学报,2020,33(5):415-420.

    ZHANG Z G, CHEN Q. Towards commercial photovoltaic materials: A new class of polymeric donor materials with low cost and high efficiency [J]. Journal of Functional Polymers,2020,33(5):415-420.
    [3] COUGHLIN J E, HENSON Z B, WELCH G C, et al. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells [J]. Accounts of Chemical Research,2014,47(1):257-270. doi: 10.1021/ar400136b
    [4] MCCULLOUGH R D, LOWE R D, JAYARAMAN M, et al. Design, synthesis, and control of conducting polymer architectures: Structurally homogeneous poly(3-alkylthiophenes) [J]. Journal of Organic Chemistry,1993,58(4):904-912. doi: 10.1021/jo00056a024
    [5] SUN Y, FU H, WANG Z. Polymer donors for high-performance non-fullerene organic solar cells [J]. Angewandte Chemie: International Edition,2019,58:2-14. doi: 10.1002/anie.201813331
    [6] QIAN D, YE L, ZHANG M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state [J]. Macromolecules,2012,45(24):9611-9617. doi: 10.1021/ma301900h
    [7] SHEINA E E, LIU J, IOVU M C, et al. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations [J]. Macromolecules,2004,37(10):3526-3528. doi: 10.1021/ma0357063
    [8] IOVU M C, SHEINA E E, GIL R R, et al. Experimental evidence for the quasi- “living” nature of the Grignard metathesis method for the synthesis of regioregular poly(3-alkylthiophenes) [J]. Macromolecules,2005,38(21):8649-8656. doi: 10.1021/ma051122k
    [9] MIYAKOSHI R, YOKOYAMA A, YOKOZAWA T. Synthesis of poly(3-hexylthiophene) with a narrower polydispersity [J]. Macromolecular Rapid Communications,2004,25(19):1663-1666. doi: 10.1002/marc.200400281
    [10] BERYOZKINA T, SENKOVSKYY V, KAUL E, et al. Kumada catalyst-transfer polycondensation of thiophene-based oligomers: Robustness of a chain-growth mechanism [J]. Macromolecules,2008,41(21):7817-7823. doi: 10.1021/ma801660x
    [11] TSAI C, FORTNEY A, QIU Y, et al. Conjugated polymers with repeated sequences of group 16 heterocycles synthesized through catalyst-transfer polycondensation [J]. Journal of the American Chemical Society,2016,138(21):6798-6804. doi: 10.1021/jacs.6b01916
    [12] 洪宇文, 单通, 丁奎, 等. 基于非平面稠环苝酰亚胺的全聚合物太阳能电池 [J]. 功能高分子学报,2020,33(3):253-261.

    HONG Y W, SHAN T, DING K, et al. All-polymer solar cells based on acceptors containing non-planar fused perylene diimide [J]. Journal of Functional Polymers,2020,33(3):253-261.
    [13] ROUSE P E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers [J]. The Journal of Chemical Physics,1953,21(7):1272-1280. doi: 10.1063/1.1699180
    [14] ZHANG M, GUO X, MA W, et al. A polythiophene derivative with superior properties for practical application in polymer solar cells [J]. Advanced Materials,2014,26(33):5880. doi: 10.1002/adma.201401494
    [15] REICHSÖLLNER E, CREAMER A, CONG S, et al. Fast and selective post-polymerization modification of conjugated polymers using dimethyldioxirane [J]. Frontiers in Chemistry,2019,7:123.
    [16] PAEK S, LEE J, KO J M, et al. Synthesis of polythiophenes with electron-donating side-chain and their application to organic thin-film transistors [J]. Molecular Crystals and Liquid Crystals,2009,504(1):52-58. doi: 10.1080/15421400902939116
    [17] WANG Q, LI M, ZHANG X, et al. Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: The effect of chlorination on their properties [J]. Macromolecules,2019,52(12):4464-4474. doi: 10.1021/acs.macromol.9b00793
    [18] WILLOT P, KOECKELBERGHS G. Evidence for catalyst association in the catalyst transfer polymerization of thieno[3, 2-b]thiophene [J]. Macromolecules,2014,47(24):8548-8555. doi: 10.1021/ma502139n
    [19] QIU Y, FORTNEY A, TSAI C H, et al. Synthesis of polyfuran and thiophene-furan alternating copolymers using catalyst-transfer polycondensation [J]. ACS Macro Letters,2016,5(3):332-336. doi: 10.1021/acsmacrolett.5b00666
    [20] WANG P, JEON I, LIN Z, et al. Insights into magneto-optics of helical conjugated polymers [J]. Journal of the American Chemical Society,2018,140(20):6501-6508. doi: 10.1021/jacs.8b03777
    [21] KHAN J I, ASHRAF R S, ALAMOUDI M A, et al. P3HT molecular weight determines the performance of P3HT: O-IDTBR solar cells [J]. Solar RRL,2019,3(8):1900023. doi: 10.1002/solr.201900023
    [22] HOLLIDAY S, ASHRAF R S, WADSWORTH A, et al. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor [J]. Nature Communications,2016,7(1):11585. doi: 10.1038/ncomms11585
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  45
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2021-06-23
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回