[1] |
WANG L, ZHANG X, GUO Y, et al. Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts [J]. Cellular Physiology and Biochemistry,2010,26(6):1093-1102. doi: 10.1159/000323987
|
[2] |
BAO M, LOU X, ZHOU Q, et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering [J]. ACS Applied Materials and Interfaces,2014,6(4):2611-2621.
|
[3] |
ZHANG B, DEBARTOLO J E, SONG J. Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water [J]. ACS Applied Materials and Interfaces,2017,9(5):4450-4456.
|
[4] |
GUNES I S, JANA S C. Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials [J]. Journal of Nanoscience and Nanotechnology,2008,8(4):1616-1637. doi: 10.1166/jnn.2008.18227
|
[5] |
ZHENG X, ZHOU S, LI X, et al. Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites [J]. Biomaterials,2006,27(24):4288-4295. doi: 10.1016/j.biomaterials.2006.03.043
|
[6] |
SUN B, WU J, CUI S, et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy [J]. Nano Research,2017,10(1):37-48. doi: 10.1007/s12274-016-1264-x
|
[7] |
LEE W C, LIM C H Y X, SHI H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide [J]. ACS Nano,2011,5(9):7334-7341. doi: 10.1021/nn202190c
|
[8] |
LUO Y, SHEN H, FANG Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats [J]. ACS Applied Materials and Interfaces,2015,7(11):6331-6339.
|
[9] |
ZHANG S, CHENG Y, XU W, et al. Dispersibility of different sized graphene oxide sheets and their reinforcement on polyamide 6 fibers [J]. RSC Advances,2017,7(89):56682-56690. doi: 10.1039/C7RA12261F
|
[10] |
AWAJA F, SPERANZA G, KALTENEGGER H, et al. Surface modification and characterization of GO/polymer thin coatings as excellent bio-active platforms for tissue regeneration [J]. Materials Science and Engineering C: Materials for Biological Applications,2018,84:130-139.
|
[11] |
刘畅, 易兵成, 王先流, 等. Lys-GO对PLCL形状记忆纤维的力学增强和成骨诱导作用 [J]. 功能高分子学报,2020,33(5):483-491.LIU C, YI B C, WANG X L, et al. Effects of lysine-grafted graphene oxide on the mechanical and osteogenesis properties of shape memory capable PLCL fibers [J]. Journal of Functional Polymer,2020,33(5):483-491.
|
[12] |
HUANG Q, HAO L, GONG T, et al. Enhancement of physicochemical properties and biocompatibility of shape memory polymers by the addition of graphene oxide [J]. Journal of Biomedical Nanotechnology,2017,13(6):678-687. doi: 10.1166/jbn.2017.2381
|
[13] |
WANG X, YAN H, SHEN Y, et al. Shape memory and osteogenesis capabilities of the electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified poly(L-lactide) fibrous mats [J]. Tissue Engineering Part A,2021,27(1-2):142-152.
|
[14] |
霍影, 王先流, 易兵成, 等. 形状记忆取向纤维膜的形状回复力调控 [J]. 功能高分子学报,2020,33(1):46-53.HUO Y, WANG X L, YI B C, et al. Regulating the shape recovery stress of aligned fibrous mats with shape memory capability [J]. Journal of Functional Polymer,2020,33(1):46-53.
|
[15] |
PERUMBILAVIL S, SANKAR P, ROSE T P, et al. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400-700 nm region [J]. Applied Physics Letters,2015,107(5):051104. doi: 10.1063/1.4928124
|
[16] |
KANG E S, SONG I, KIM D S, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells [J]. Colloids and Surfaces B: Biointerfaces,2018,169:20-29. doi: 10.1016/j.colsurfb.2018.04.053
|
[17] |
SUN Y, HE C. Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites [J]. ACS Macro Letters,2012,1(6):709-713. doi: 10.1021/mz300131u
|
[18] |
ZINI E, SCANDOLA M, DOBRZYNSKI P, et al. Shape memory behavior of novel (L-lactide-glycolide-trimethylene carbonate) terpolymers [J]. Biomacromolecules,2007,8(11):3661-3667. doi: 10.1021/bm700773s
|
[19] |
LI Y, UMER R, SAMAD Y A, et al. The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites [J]. Carbon,2013,55:321-327. doi: 10.1016/j.carbon.2012.12.071
|
[20] |
KERAMATI M, GHASEMI I, KARRABI M, et al. Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite [J]. Fibers and Polymers,2016,17(7):1062-1068. doi: 10.1007/s12221-016-6329-7
|
[21] |
KIM J, KIM S W, YUN H, et al. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube polymer composites [J]. RSC Advances,2017,7(48):30221-30228. doi: 10.1039/C7RA04015F
|
[22] |
PATEL K K, PUROHIT R, HASHMI S A R, et al. Effect of the diameter of MWCNTs on shape memory and mechanical properties of polyurethane composites [J]. Journal of Polymer Research,2020,27(2):29. doi: 10.1007/s10965-019-2003-2
|
[23] |
TSENG I H, CHANG J C, HUANG S L, et al. Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide [J]. Polymer International,2013,62(5):827-835. doi: 10.1002/pi.4375
|
[24] |
XIE H, SHAO J, MA Y, et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers [J]. Biomaterials,2018,164:11-21. doi: 10.1016/j.biomaterials.2018.02.040
|
[25] |
LIN L, ZHUANG X, HUANG R, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells [J]. International Journal of Nanomedicine,2020,15:1421-1435. doi: 10.2147/IJN.S225722
|
[26] |
陈力, 段鑫, 项舟. 氧化石墨烯在骨组织工程中的研究进展 [J]. 中国修复重建外科杂志,2018,32(5):625-629.CHEN L, DUAN X, XIANG Z. Recent advances in application of graphene oxide for bone tissue engineering [J]. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(5):625-629.
|