高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯改性形状记忆纤维的尺寸相关性

薛苏桐 王先流 易兵成 郭煦然 唐寒 沈炎冰 张彦中

薛苏桐, 王先流, 易兵成, 郭煦然, 唐寒, 沈炎冰, 张彦中. 氧化石墨烯改性形状记忆纤维的尺寸相关性[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210411001
引用本文: 薛苏桐, 王先流, 易兵成, 郭煦然, 唐寒, 沈炎冰, 张彦中. 氧化石墨烯改性形状记忆纤维的尺寸相关性[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210411001
XUE Sutong, WANG Xianliu, YI Bingcheng, GUO Xuran, TANG Han, SHEN Yanbing, ZHANG Yanzhong. Lateral Size Dependence of Graphene Oxide in Modifying Shape Memory Polymer Fibers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210411001
Citation: XUE Sutong, WANG Xianliu, YI Bingcheng, GUO Xuran, TANG Han, SHEN Yanbing, ZHANG Yanzhong. Lateral Size Dependence of Graphene Oxide in Modifying Shape Memory Polymer Fibers[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210411001

氧化石墨烯改性形状记忆纤维的尺寸相关性

doi: 10.14133/j.cnki.1008-9357.20210411001
基金项目: 国家自然科学基金(31771050、32071345和31570969);中央高校基本科研业务费专项资金(2232019A3-09);国家科技部重点研发专项(2016YFC1100203)
详细信息
    作者简介:

    薛苏桐(1996—),男,山西河津人,硕士,主要研究方向为仿生材料与再生医学。E-mail:18234075077@163.com

    通讯作者:

    张彦中,E-mail:yzzhang@dhu.edu.cn

  • 中图分类号: R318.08

Lateral Size Dependence of Graphene Oxide in Modifying Shape Memory Polymer Fibers

  • 摘要: 将不同片层大小的氧化石墨烯(GO)通过电纺丝方法掺杂到左旋聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PLLA/PHBV)形状记忆超细纤维中形成GO@PLLA/PHBV复合纤维。通过拉曼光谱(Raman)、场发射扫描电镜(FESEM)、透射电镜(TEM)、X射线衍射(XRD)及差示扫描量热(DSC)等对各复合纤维的形貌结构和热性能进行了表征。采用动态热机械分析(DMA)、形状回复应力测试及光热升温实验分析了各复合纤维的形状记忆性能。通过细胞增殖和成骨分化实验检测GO片层大小对复合纤维的成骨诱导作用。结果表明,小尺寸GO(sGO)的掺入对PLLA/PHBV纤维膜的力学增强及形状回复效果最为显著,可使拉伸杨氏模量提高约124%,形状回复应力增强约29%,形状回复率增大约47%,热响应速率提高约30倍;但在成骨诱导方面,掺入大尺寸GO(lGO)的PLLA/PHBV纤维则具有最优的成骨诱导性能,使骨髓间充质干细胞(BMSCs)中的碱性磷酸酶(ALP)分泌量提高了92%,钙沉积能力提高了133%。

     

  • 图  1  (a)GO的化学结构,(b)sGO、mGO及lGO超声前的Raman光谱图及(c)各GO的FESEM形貌图

    Figure  1.  (a) Chemical structure of GO, (b) Raman spectra and (c) FESEM images of sGO, mGO and lGO

    图  2  复合纤维的(a)FESEM和(b)TEM形貌图(白色箭头所指为GO)

    Figure  2.  (a) FESEM and (b) TEM images of composite fibers (the white arrows point to GO)

    图  3  复合纤维的(a)拉曼光谱图、(b)热失重曲线、(c)XRD图谱和(d)DSC图谱

    Figure  3.  (a) Raman spectra, (b) TG curves, (c) XRD patterns and (d) DSC curves of the composite fibers

    图  4  复合纤维膜的(a)拉伸杨氏模量;(b)形状固定率和形状回复率;(c)最大回复应力;(d)升温速率

    Figure  4.  (a) Tensile Young's modulus; (b) Shape fixation ratio and shape recovery ratio; (c) ultimate recovery stress, and (d) the heating rates of composite fibers

    图  5  BMSCs在复合纤维支架上(a)培养1、3、6 d的增殖情况;(b)培养3 d的骨架染色图;培养14 d后的ALP和ARS(c)染色及定量

    Figure  5.  (a) Proliferation of BMSCs assayed at 1, 3, 6 d; (b) Images of cytoskeleton staining at 3 d; (c) ALP and ARS staining, and (d) quantitative measurements of BMSCs cultured on fibrous scaffolds for 14 d

  • [1] WANG L, ZHANG X, GUO Y, et al. Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts [J]. Cellular Physiology and Biochemistry,2010,26(6):1093-1102. doi: 10.1159/000323987
    [2] BAO M, LOU X, ZHOU Q, et al. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering [J]. ACS Applied Materials & Interfaces,2014,6(4):2611-2621.
    [3] ZHANG B, DEBARTOLO J E, SONG J. Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water [J]. ACS Applied Materials & Interfaces,2017,9(5):4450-4456.
    [4] GUNES I S, JANA S C. Shape memory polymers and their nanocomposites: A review of science and technology of new multifunctional materials [J]. Journal of Nanoscience and Nanotechnology,2008,8(4):1616-1637. doi: 10.1166/jnn.2008.18227
    [5] ZHENG X, ZHOU S, LI X, et al. Shape memory properties of poly(D, L-lactide)/hydroxyapatite composites [J]. Biomaterials,2006,27(24):4288-4295. doi: 10.1016/j.biomaterials.2006.03.043
    [6] SUN B, WU J, CUI S, et al. In situ synthesis of graphene oxide/gold nanorods theranostic hybrids for efficient tumor computed tomography imaging and photothermal therapy [J]. Nano Research,2017,10(1):37-48. doi: 10.1007/s12274-016-1264-x
    [7] LEE W C, LIM C H Y X, SHI H, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide [J]. ACS Nano,2011,5(9):7334-7341. doi: 10.1021/nn202190c
    [8] LUO Y, SHEN H, FANG Y, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats [J]. ACS Applied Materials & Interfaces,2015,7(11):6331-6339.
    [9] ZHANG S, CHENG Y, XU W, et al. Dispersibility of different sized graphene oxide sheets and their reinforcement on polyamide 6 fibers [J]. RSC Advances,2017,7(89):56682-56690. doi: 10.1039/C7RA12261F
    [10] AWAJA F, SPERANZA G, KALTENEGGER H, et al. Surface modification and characterization of GO/polymer thin coatings as excellent bio-active platforms for tissue regeneration [J]. Materials Science & Engineering C-Materials for Biological Applications,2018,84:130-139.
    [11] 刘畅, 易兵成, 王先流, 等. Lys-GO对PLCL形状记忆纤维的力学增强和成骨诱导作用 [J]. 功能高分子学报,2020,33(5):483-491.

    LIU C, YI B C, WANG X L, et al. Effects of lysine-grafted graphene oxide on the mechanical and osteogenesis properties of shape memory capable plcl fibers [J]. Journal of Functional Polymer,2020,33(5):483-491.
    [12] HUANG Q, HAO L, GONG T, et al. Enhancement of physicochemical properties and biocompatibility of shape memory polymers by the addition of graphene oxide [J]. Journal of Biomedical Nanotechnology,2017,13(6):678-687. doi: 10.1166/jbn.2017.2381
    [13] WANG X, YAN H, SHEN Y, et al. Shape memory and osteogenesis capabilities of the electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified poly(l-lactide) fibrous mats [J]. Tissue Engineering Part A,2020:32524903.
    [14] 霍影, 王先流, 易兵成, 等. 形状记忆取向纤维膜的形状回复力调控 [J]. 功能高分子学报,2020,33(1):46-53.

    HUO Y, WANG X L, YI B C, et al. Regulating the shape recovery stress of aligned fibrous mats with shape memory capability [J]. Journal of Functional Polymer,2020,33(1):46-53.
    [15] PERUMBILAVIL S, SANKAR P, ROSE T P, et al. White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400-700 nm region [J]. Applied Physics Letters,2015,107(5):051104. doi: 10.1063/1.4928124
    [16] KANG E S, SONG I, KIM D S, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells [J]. Colloids and Surfaces B: Biointerfaces,2018,169:20-29. doi: 10.1016/j.colsurfb.2018.04.053
    [17] SUN Y, HE C. Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites [J]. ACS Macro Letters,2012,1(6):709-713. doi: 10.1021/mz300131u
    [18] ZINI E, SCANDOLA M, DOBRZYNSKI P, et al. Shape memory behavior of novel (L-lactide-glycol ide-trimethylene carbonate) terpolymers [J]. Biomacromolecules,2007,8(11):3661-3667. doi: 10.1021/bm700773s
    [19] LI Y, UMER R, SAMAD Y A, et al. The effect of the ultrasonication pre-treatment of graphene oxide (GO) on the mechanical properties of GO/polyvinyl alcohol composites [J]. Carbon,2013,55:321-327. doi: 10.1016/j.carbon.2012.12.071
    [20] KERAMATI M, GHASEMI I, KARRABI M, et al. Incorporation of surface modified graphene nanoplatelets for development of shape memory PLA nanocomposite [J]. Fibers and Polymers,2016,17(7):1062-1068. doi: 10.1007/s12221-016-6329-7
    [21] KIM J, KIM S W, YUN H, et al. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube polymer composites [J]. RSC Advances,2017,7(48):30221-30228. doi: 10.1039/C7RA04015F
    [22] PATEL K K, PUROHIT R, HASHMI S A R, et al. Effect of the diameter of MWCNTs on shape memory and mechanical properties of polyurethane composites [J]. Journal of Polymer Research,2020,27(2):29. doi: 10.1007/s10965-019-2003-2
    [23] TSENG I H, CHANG J C, HUANG S L, et al. Enhanced thermal conductivity and dimensional stability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide [J]. Polymer International,2013,62(5):827-835. doi: 10.1002/pi.4375
    [24] XIE H, SHAO J, MA Y, et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers [J]. Biomaterials,2018,164:11-21. doi: 10.1016/j.biomaterials.2018.02.040
    [25] LIN L, ZHUANG X, HUANG R, et al. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells [J]. International Journal of Nanomedicine,2020,15:1421-1435. doi: 10.2147/IJN.S225722
    [26] 陈力, 段鑫, 项舟. 氧化石墨烯在骨组织工程中的研究进展 [J]. 中国修复重建外科杂志,2018,32(5):625-629.

    CHEN L, DUAN X, XIANG Z. Recent advances in application of graphene oxide for bone tissue engineering [J]. Chinese Journal of Reparative and Reconstructive Surgery,2018,32(5):625-629.
  • 加载中
图(5)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  70
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回