高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光素基PGMA的合成及其发光性能

刘斌 王亚玲 储波 段汉一 李杨 王慧奇 胡胜亮 张兴宏

刘斌, 王亚玲, 储波, 段汉一, 李杨, 王慧奇, 胡胜亮, 张兴宏. 荧光素基PGMA的合成及其发光性能[J]. 功能高分子学报, 2021, 34(5): 460-467. doi: 10.14133/j.cnki.1008-9357.20210409001
引用本文: 刘斌, 王亚玲, 储波, 段汉一, 李杨, 王慧奇, 胡胜亮, 张兴宏. 荧光素基PGMA的合成及其发光性能[J]. 功能高分子学报, 2021, 34(5): 460-467. doi: 10.14133/j.cnki.1008-9357.20210409001
LIU Bin, WANG Yaling, CHU Bo, DUAN Hanyi, LI Yang, WANG Huiqi, HU Shengliang, ZHANG Xinghong. Synthesis and Photoluminescence Properties of Fluorescein-Based Poly(glycidyl methacrylate)[J]. Journal of Functional Polymers, 2021, 34(5): 460-467. doi: 10.14133/j.cnki.1008-9357.20210409001
Citation: LIU Bin, WANG Yaling, CHU Bo, DUAN Hanyi, LI Yang, WANG Huiqi, HU Shengliang, ZHANG Xinghong. Synthesis and Photoluminescence Properties of Fluorescein-Based Poly(glycidyl methacrylate)[J]. Journal of Functional Polymers, 2021, 34(5): 460-467. doi: 10.14133/j.cnki.1008-9357.20210409001

荧光素基PGMA的合成及其发光性能

doi: 10.14133/j.cnki.1008-9357.20210409001
基金项目: 国家自然科学基金(52003254,51973190);山西省应用基础研究计划项目(201901D211262,201901D211282);浙江大学高分子合成与功能构造教育部重点实验室开放课题(2020MSF01)
详细信息
    作者简介:

    刘斌:刘 斌(1990—),男,山西朔州人,博士研究生,讲师,主要研究方向为荧光聚合物材料在LED中的应用。E-mail:liubin@nuc.edu.cn

    通讯作者:

    刘 斌,E-mail:liubin@nuc.edu.cn;张兴宏,E-mail:xhzhang@zju.edu.cn

  • 中图分类号: O63

Synthesis and Photoluminescence Properties of Fluorescein-Based Poly(glycidyl methacrylate)

  • 摘要: 以传统具有聚集诱导猝灭(ACQ)效应的荧光素作为引发剂、甲基丙烯酸缩水甘油酯(GMA)为单体,通过原子转移自由基聚合(ATRP)将荧光素引入到聚甲基丙烯酸缩水甘油酯(PGMA)中,制得荧光素位于链中央的荧光素基PGMA(Flu-PGMA)。采用差示扫描量热、热重分析、稳态和瞬态荧光光谱等对Flu-PGMA的热学性能和荧光性能进行了表征,并利用PR655光谱仪对白光发光二极管(LEDs)的器件性能进行了研究。结果表明:PGMA克服了小分子荧光素的 ACQ 效应,Flu-PGMA的数均分子量为 2.64×104,分子量分布为 1.5,固态荧光量子产率达 14.27%。将其作为单一基质固态荧光粉,在 460 nm InGaN 蓝光芯片激发下,当驱动电压为 2.7 V 时,制得显色指数为 84 的白光发光LEDs器件,其相关色温为 9 455K,色坐标为(0.289, 0.282),位于白光区域。

     

  • 图  1  Flu-PGMA的合成路线图

    Figure  1.  Synthetic route of Flu-PGMA

    图  2  Flu-PGMA的(a)GPC曲线、(b)FT-IR谱图、(c)DSC曲线、(d)TGA曲线和(e)Flu-PGMA固态膜的UV-Vis及透过率图(膜厚:0.71 mm)

    Figure  2.  (a)GPC curve, (b)FT-IR spectrum, (c)DSC curve, (d)TGA curve and (e)UV-Vis and transmittance spectra of solid Flu-PGMA(thickness: 0.71 mm)

    图  3  (a)Flu-PGMA、PGMA、荧光素引发剂以及荧光素在460 nm激发光下的荧光曲线;(b)Flu-PGMA分别在日光(左)和365 nm紫外光(右)下的照片;(c)Flu-PGMA在不同激发光波长下的荧光光谱;(d)Flu-PGMA的时间分辨荧光衰减曲线(激发光波长为405 nm)

    Figure  3.  (a) PL spectra of Flu-PGMA, PGMA, initiator and fluorescein under 460 nm excitation; (b) Photographs of Flu-PGMA in daylight(left)and under 365 nm UV light(right); (c) PL spectra of Flu-PGMA at different excitation wavelengths; (d)Time-resolved fluorescence decay curve of Flu-PGMA(λex = 405 nm)

    图  4  (a)利用Flu-PGMA结合460 nm蓝光芯片制备白光LEDs的示意图;(b)基于Flu-PGMA所制备的白光LEDs在不同工作电压下的发射光谱(460 nm蓝光芯片)及其(c)色坐标图(插图是白光LEDs在未通电压和在2.4 V电压下的照片)

    Figure  4.  (a)Schematic diagram of white LEDs fabricated by Flu-PGMA combined with a 460 nm blue chip; (b)Electroluminescence spectra (460 nm blue chip) and (c) color coordinates of Flu-PGMA-based white LEDs under different working voltages (Insert are digital photos of the white LEDs at unswitched voltage and at 2.4 V)

  • [1] YE S, XIAO F, PAN Y X, et al. Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties [J]. Mater Sci Eng: R Rep,2010,71(1):1-34. doi: 10.1016/j.mser.2010.07.001
    [2] SCHUBERT E F, KIM J K. Solid-state light sources getting smart [J]. Science,2005,308(5726):1274-1278. doi: 10.1126/science.1108712
    [3] LI G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs [J]. Chem Soc Rev,2015,44(23):8688-8713. doi: 10.1039/C4CS00446A
    [4] NAIR G B, SWART H C, DHOBLE S J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization [J]. Prog Mater Sci,2020,109:100622. doi: 10.1016/j.pmatsci.2019.100622
    [5] WANG Z, YUAN F, LI X, et al. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes [J]. Adv Mater,2017,29(37):1702910. doi: 10.1002/adma.201702910
    [6] ARCUDI F, DORDEVIC L, PRATO M. Rationally designed carbon nanodots towards pure white-light emission [J]. Angew Chem Int Ed,2017,56(15):4170-4173. doi: 10.1002/anie.201612160
    [7] JIANG B P, YU Y X, GUO X L, et al. White-emitting carbon dots with long alkyl-chain structure: Effective inhibition of aggregation caused quenching effect for label-free imaging of latent fingerprint [J]. Carbon,2018,128:12-20. doi: 10.1016/j.carbon.2017.11.070
    [8] LIU B, CHU B, WANG Y L, et al. Crosslinking-induced white light emission of poly(hydroxyurethane) microspheres for white LEDs [J]. Adv Opt Mater,2020,8(14):1902176. doi: 10.1002/adom.201902176
    [9] YUAN B, XIE Z, CHEN P, et al. Highly efficient carbon dots and their nanohybrids for trichromatic white LEDs [J]. J Mater Chem C,2018,6(22):5957-5963. doi: 10.1039/C8TC01659C
    [10] LIU B, WANG Y L, BAI W, et al. Fluorescent linear CO2-derived poly(hydroxyurethane) for cool white LEDs [J]. J Mater Chem C,2017,5(20):4892-4898. doi: 10.1039/C7TC01236E
    [11] LIU B, CHU B, WANG Y L, et al. Carbon dioxide derived carbonized polymer dots for multicolor light-emitting diodes [J]. Green Chem,2021,23(1):422-429. doi: 10.1039/D0GC03333B
    [12] LIU B, DUAN H Y, WANG Y L, et al. A fluorescein-centered polymer as a phosphor for fabricating pure white light-emitting diodes [J]. Mater Horiz,2018,5(5):932-938. doi: 10.1039/C8MH00749G
    [13] JING Y N, LI S S, SU M, et al. Barbier hyperbranching polymerization-induced emission toward facile fabrication of white light-emitting diode and light-harvesting film [J]. J Am Chem Soc,2019,141(42):16839-16848. doi: 10.1021/jacs.9b08065
    [14] 张兴宏. CO2基超支化聚炔酯: 一种新型功能化平台聚合物 [J]. 功能高分子学报,2020,33(6):515-518.

    ZHANG X H. CO2-Based hyperbranched poly(alkynoate)s: A platform polymer for diverse functionalizations [J]. Journal of Functional Polymers,2020,33(6):515-518.
    [15] PURWANTO A, WANG W N, LENGGORO I W, et al. Formation and luminescence enhancement of agglomerate-free YAG: Ce3+ submicrometer particles by flame-assisted spray pyrolysis [J]. J Electrochem Soc,2007,154(3):J91. doi: 10.1149/1.2426874
    [16] REDDY M B, RAJU C N, SAILAJA S, et al. Sol-gel synthesis, structural and optical properties of rare earth ions (Sm3+ or Dy3+) activated Ca3Ga2Si3O12 powder phosphors [J]. J Lumin,2011,131(12):2503-2508. doi: 10.1016/j.jlumin.2011.06.015
    [17] YERPUDE A N, DHOBLE S J, SUDHAKARREDDY B. Blue, yellow and orange color emitting rare earth doped BaCa2A18O15 phosphors prepared by combustion method [J]. Physica B: Condensed Matter,2014,454:126-130. doi: 10.1016/j.physb.2014.05.070
    [18] WANG B, ZHANG A, YANG X, et al. A remote phosphor film of silicate-poly(styrene-co-glycidyl methacrylate) composites for NUV chip-based white LED [J]. J Alloys Compd,2017,729:117-125. doi: 10.1016/j.jallcom.2017.09.104
    [19] KWON W, DO S, LEE J, et al. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices [J]. Chem Mater,2013,25(9):1893-1899. doi: 10.1021/cm400517g
    [20] GAO H, CHEN D, FANG G, et al. Excellent luminescence films of excitation-independent carbon quantum dots toward non-rare-earth phosphor-based white light-emitting diodes [J]. J Alloys Compd,2018,764:17-23. doi: 10.1016/j.jallcom.2018.06.059
    [21] CAO M, XIA C, XIA J, et al. A yellow carbon dots-based phosphor with high efficiency for white light-emitting devices [J]. J Lumin,2019,206:97-104. doi: 10.1016/j.jlumin.2018.10.056
    [22] ZHENG J, WANG J, WANG Y, et al. Facile and rapid synthesis of yellow-emission carbon dots for white light-emitting diodes [J]. J Electron Mater,2018,47(12):7497-7504. doi: 10.1007/s11664-018-6691-x
    [23] UTHIRAKUMAR P, HONG C H, SUH E K, et al. Yellow light-emitting polymer bearing fluorescein dye units: Photophysical property and application as luminescence converter of a hybrid LEDs [J]. React Funct Polym,2007,67(4):341-347. doi: 10.1016/j.reactfunctpolym.2007.01.012
    [24] JIN J Y, LEE H Y, LEE S H, et al. InGaN/bivalent fluorescein salt luminescence conversion light-emitting diode: Stability and photothemical reaction [J]. J Lumin,2007,127(2):665-670. doi: 10.1016/j.jlumin.2007.04.004
    [25] BOONSIN R, CHADEYRON G, ROBLIN J P, et al. Silica encapsulated fluorescein as a hybrid dye for blue-LEDs based lighting devices [J]. J Mater Chem C,2016,4(27):6562-6569. doi: 10.1039/C6TC01039C
    [26] SHAO C, DUAN H, MIN Y, et al. Diphenyl cyclopropenone-centered polymers for site-specific CO-releasing and chain dissociation [J]. Chin Chem Lett,2020,31(1):299-302. doi: 10.1016/j.cclet.2019.03.053
    [27] RAGAB A E E A, GADALLAH A, MOHAMED M B, et al. Effect of silver NPs plasmon on optical properties of fluorescein dye [J]. Opt Laser Technol,2013,52:109-112. doi: 10.1016/j.optlastec.2013.04.007
    [28] ZHANG R, LIN H, YU Y, et al. A new-generation color converter for high-power white LEDs: Transparent Ce3+∶YAG phosphor-in-glass [J]. Laser Photonics Rev,2014,8(1):158-164. doi: 10.1002/lpor.201300140
    [29] LI Y Q, HIROSAKI N, XIE R J, et al. Yellow-orange-emitting CaAlSiN3∶Ce3+ phosphor: Structure, photoluminescence, and application in white LEDs [J]. Chem Mater,2008,20(21):6704-6714. doi: 10.1021/cm801669x
  • 加载中
图(4)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  81
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回