[1] |
TOSHIMI S, MITSUTOSHI M, HIROYUKI M. Supramolecular nanotube architectures based on amphiphilic molecules [J]. Chemical Reviews,2005,105(4):1401-1443. doi: 10.1021/cr030072j
|
[2] |
HUANG Z, GUAN S, WANG Y, et al. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: A novel hydrolase model [J]. Journal of Materials Chemistry B,2013,1(17):2297-2304. doi: 10.1039/c3tb20156b
|
[3] |
DENG Y, LING J, LI M H. Physical stimuli-responsive liposomes and polymerases as drug delivery vehicles based on phase transitions in the membrane [J]. Nanoscale,2018,10(15):6781-6800. doi: 10.1039/C8NR00923F
|
[4] |
MARTIN C R, PUNIT K. The emerging field of nanotube biotechnology [J]. Nature Review Drug Discovery,2003,2(1):29-37. doi: 10.1038/nrd988
|
[5] |
WONG C K, MASON A F, STENZEL M H, et al. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions [J]. Nature Communications,2017,8(1):1240. doi: 10.1038/s41467-017-01372-z
|
[6] |
ZHOU Y, SHIMIZU T. Lipid nanotubes: A unique template to create diverse one-dimensional nanostructures [J]. Chemistry of Materials,2008,20(3):625-633. doi: 10.1021/cm701999m
|
[7] |
UNSAL H, SCHMIDT J, TALMON Y, et al. Dual-responsive lipid nanotubes: Two-way morphology control by pH and redox effects [J]. Langmuir,2016,32(21):5324-5332. doi: 10.1021/acs.langmuir.6b00350
|
[8] |
SEEMAN N C. DNA in a material world [J]. Nature,2003,421(6921):427-431. doi: 10.1038/nature01406
|
[9] |
ROTHEMUND P W K, AXEL E N, NICK P, et al. Design and characterization of programmable DNA nanotubes [J]. Journal of the American Chemical Society,2004,126(50):16344-16352. doi: 10.1021/ja044319l
|
[10] |
YIN P, HARIADI R F, SAHU S, et al. Programming DNA tube circumferences [J]. Science,2008,321(5890):824-826. doi: 10.1126/science.1157312
|
[11] |
GAO X, MATSUI H. Peptide-based nanotubes and their applications in bionanotechnology [J]. Advanced Materials,2010,17(17):2037-2050.
|
[12] |
THOMAS F, BURGESS N C, THOMSON A R, et al. Controlling the assembly of coiled-coil peptide nanotubes [J]. Angewandte Chemie International Edition,2016,55(3):987-991. doi: 10.1002/anie.201509304
|
[13] |
KIM S H, NEDERBERG F, JAKOBS R, et al. A supramolecularly assisted transformation of block-copolymer micelles into nanotubes [J]. Angewandte Chemie International Edition,2009,121(25):4578-4582.
|
[14] |
DING Z, DING M, GAO C, et al. In situ synthesis of coil-coil diblock copolymer nanotubes and tubular Ag/polymer nanocomposites by RAFT dispersion polymerization in poly(ethylene glycol) [J]. Macromolecules,2017,50(19):7593-7602. doi: 10.1021/acs.macromol.7b01363
|
[15] |
WANG X S, WINNIK M A, IAN M. Swellable, redox-active shell-crosslinked organometallic nanotubes [J]. Angewandte Chemie International Edition,2010,43(28):3703-3707.
|
[16] |
REUTHER J F, SIRIWARDANE D A, CAMPOS R, et al. Solvent tunable self-assembly of amphiphilic rod-coil block copolymers with chiral, helical polycarbodiimide segments: Polymeric nanostructures with variable shapes and sizes [J]. Macromolecules,2015,48(19):6890-6899. doi: 10.1021/acs.macromol.5b01564
|
[17] |
李飞燕, 唐政敏, 蔡春华, 等. 刚-柔嵌段共聚物在有序排列的微米圆盘表面自组装构筑多级结构 [J]. 功能高分子学报,2019,32(3):292-299.LI F Y, TANG Z M, CAI C H, et al. Self-assembly of rod-coil block copolymers on orderly arrayed micro-disks: A route towards hierarchical structures [J]. Journal of Functional Polymers,2019,32(3):292-299.
|
[18] |
YAN X, LIU G, LI Z. Preparation and phase segregation of block copolymer nanotube multiblocks [J]. Journal of the American Chemical Society,2004,126(32):10059-10066. doi: 10.1021/ja0479890
|
[19] |
QIU H, HUDSON Z M, WINNIK M A, et al. Micelle assembly multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles [J]. Science,2015,347(6228):1329-1332. doi: 10.1126/science.1261816
|
[20] |
MICHEL S, ALAIN D. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes [J]. Science,2008,319(5869):1512-1515. doi: 10.1126/science.1153848
|
[21] |
HUANG Z, KANG S K, BANNO M, et al. Pulsating tubules from noncovalent macrocycles [J]. Science,2012,337(6101):1521-1526. doi: 10.1126/science.1224741
|
[22] |
VIRGIL P, DULCEY A E, YOSHIKO M, et al. Self-assembly of amphiphilic dendritic dipeptides into helical pores [J]. Nature,2004,430(7001):764-768. doi: 10.1038/nature02770
|
[23] |
EUNJI L, JUNG-KEUN K, MYONGSOO L. Lateral association of cylindrical nanofibers into flat ribbons triggered by "molecular glue" [J]. Angewandte Chemie International Edition,2010,47(34):6375-6378.
|
[24] |
YAO Y, XUE M, CHEN J, et al. An amphiphilic pillar[5]arene: Synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption [J]. Journal of the American Chemical Society,2012,134(38):15712-15715. doi: 10.1021/ja3076617
|
[25] |
DIRK V, OZLEM I, MESKERS S C J, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends [J]. Journal of the American Chemical Society,2008,130(24):7721-7735. doi: 10.1021/ja8012598
|
[26] |
SONG S, JIN Y, PARK S H, et al. A low-bandgap alternating copolymer containing the dimethylbenzimidazole moiety [J]. Journal of Materials Chemistry,2010,20(31):6517-6523. doi: 10.1039/c0jm00772b
|
[27] |
ZHUANG W, LUNDIN A, ANDERSSON M R. Computational modelling of donor-acceptor conjugated polymers through engineered backbone manipulations based on a thiophene-quinoxaline alternating copolymer [J]. Journal of Materials Chemistry A,2014,2(7):2202-2212. doi: 10.1039/C3TA14456A
|
[28] |
LAZZARA T D, VEN T G M, WHITEHEAD M A. Nanotube self-assembly of a styrene and maleimide alternating copolymer [J]. Macromolecules,2008,41(18):6747-6751. doi: 10.1021/ma800926a
|
[29] |
YI C, YANG Y, YE Z, et al. Self-assembly and emulsification of poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3, 4-dihydroxyphenylethyl-maleamic acid)]} [J]. Langmuir,2012,28(25):9211-9222. doi: 10.1021/la301605a
|
[30] |
FENIMORE S G, ABEZGAUZ L, DANINO D, et al. Spontaneous alternating copolymer vesicles of alkylmaleimides and vinyl gluconamide [J]. Macromolecules,2009,42(7):2702-2707. doi: 10.1021/ma802472j
|
[31] |
LI C, RASHEED T, TIAN H, et al. Solution self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores [J]. ACS Macro Letters,2019:331-336.
|
[32] |
LI S, YU C, ZHOU Y. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations [J]. Science China Chemistry,2018,62(2):226-237.
|
[33] |
CHEN J, YU C, SHI Z, et al. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities [J]. Angewandte Chemie International Edition,2015,127(12):3692-3696.
|
[34] |
DENG H, ZHAO X, DENG L, et al. Reactive oxygen species activated nanoparticles with tumor acidity internalization for precise anticancer therapy [J]. Journal of Controlled Release,2017,255:142-153. doi: 10.1016/j.jconrel.2017.04.002
|
[35] |
POOLE K M, NELSON C E, JOSHI R V, et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease [J]. Biomaterials,2015,41:166-175. doi: 10.1016/j.biomaterials.2014.11.016
|
[36] |
WANG J, SUN X, MAO W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy [J]. Advanced Materials,2013,25(27):3670-3676. doi: 10.1002/adma.201300929
|