高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两亲性交替共聚物自组装制备尺寸可调可降解超薄纳米管

苏鹏 崔晨晖 章强 张彦峰

苏鹏, 崔晨晖, 章强, 张彦峰. 两亲性交替共聚物自组装制备尺寸可调可降解超薄纳米管[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210407001
引用本文: 苏鹏, 崔晨晖, 章强, 张彦峰. 两亲性交替共聚物自组装制备尺寸可调可降解超薄纳米管[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210407001
SU Peng, CUI Chenhui, ZHANG Qiang, ZHANG Yanfeng. Size-Tunable and Controlled Degradable Ultrathin Nanotubes Self-Assembled by Amphipathic Alternating Copolymer[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210407001
Citation: SU Peng, CUI Chenhui, ZHANG Qiang, ZHANG Yanfeng. Size-Tunable and Controlled Degradable Ultrathin Nanotubes Self-Assembled by Amphipathic Alternating Copolymer[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210407001

两亲性交替共聚物自组装制备尺寸可调可降解超薄纳米管

doi: 10.14133/j.cnki.1008-9357.20210407001
详细信息
    作者简介:

    苏鹏:苏 鹏(1986—),男,硕士,高级工程师,主要研究方向为完井测试。E-mail:346165947@qq.com

    通讯作者:

    张彦峰,E-mail:yanfengzhang@mail.xjtu.edu.cn

  • 中图分类号: O63

Size-Tunable and Controlled Degradable Ultrathin Nanotubes Self-Assembled by Amphipathic Alternating Copolymer

  • 摘要: 采用硫醇-卤素点击化学制备了一系列两亲性交替共聚物,并利用该共聚物的自组装制备了一系列超薄聚合物纳米管。研究表名:随着交替共聚物中的疏水单元长度增加,纳米管的直径从19.61 nm增加到26.34 nm;软件模拟证实,该共聚物折叠形成了三明治结构并进一步自组装成纳米管;纳米管的形貌经过双氧水的原位氧化会发生解构;纳米管的大长径比以及可控的降解性,使其在生物传递及可控释放中具有潜在应用价值。

     

  • 图  1  交替共聚物的合成及自组装

    Figure  1.  Synthesis and self-assembly of alternating copolymers

    图  2  交替共聚物的GPC曲线

    Figure  2.  GPC traces of alternating copolymers

    图  3  交替共聚物的核磁共振氢谱图

    Figure  3.  1H-NMR spectra of alternating copolymers

    图  4  纳米管的TEM照片

    Figure  4.  TEM images of nanotubes

    图  5  纳米管自组装方案

    Figure  5.  Self-assembly scheme of nanotubes

    图  6  P(DHB-alt-HDT)粉末及纳米管的DSC曲线

    Figure  6.  DSC curves of P(DHB-alt-HDT) powders and nanotube

    图  7  纳米管经过过氧化氢氧化后的TEM图

    Figure  7.  TEM image of nanotubes oxidized by H2O2

  • [1] TOSHIMI S, MITSUTOSHI M, HIROYUKI M. Supramolecular nanotube architectures based on amphiphilic molecules [J]. Chemical Reviews,2005,105(4):1401-1443. doi: 10.1021/cr030072j
    [2] HUANG Z, GUAN S, WANG Y, et al. Self-assembly of amphiphilic peptides into bio-functionalized nanotubes: A novel hydrolase model [J]. Journal of Materials Chemistry B,2013,1(17):2297-2304. doi: 10.1039/c3tb20156b
    [3] DENG Y, LING J, LI M H. Physical stimuli-responsive liposomes and polymerases as drug delivery vehicles based on phase transitions in the membrane [J]. Nanoscale,2018,10(15):6781-6800. doi: 10.1039/C8NR00923F
    [4] MARTIN C R, PUNIT K. The emerging field of nanotube biotechnology [J]. Nature Review Drug Discovery,2003,2(1):29-37. doi: 10.1038/nrd988
    [5] WONG C K, MASON A F, STENZEL M H, et al. Formation of non-spherical polymersomes driven by hydrophobic directional aromatic perylene interactions [J]. Nature Communications,2017,8(1):1240. doi: 10.1038/s41467-017-01372-z
    [6] ZHOU Y, SHIMIZU T. Lipid nanotubes: A unique template to create diverse one-dimensional nanostructures [J]. Chemistry of Materials,2008,20(3):625-633. doi: 10.1021/cm701999m
    [7] UNSAL H, SCHMIDT J, TALMON Y, et al. Dual-responsive lipid nanotubes: Two-way morphology control by pH and redox effects [J]. Langmuir,2016,32(21):5324-5332. doi: 10.1021/acs.langmuir.6b00350
    [8] SEEMAN N C. DNA in a material world [J]. Nature,2003,421(6921):427-431. doi: 10.1038/nature01406
    [9] ROTHEMUND P W K, AXEL E N, NICK P, et al. Design and characterization of programmable DNA nanotubes [J]. Journal of the American Chemical Society,2004,126(50):16344-16352. doi: 10.1021/ja044319l
    [10] YIN P, HARIADI R F, SAHU S, et al. Programming DNA tube circumferences [J]. Science,2008,321(5890):824-826. doi: 10.1126/science.1157312
    [11] GAO X, MATSUI H. Peptide-based nanotubes and their applications in bionanotechnology [J]. Advanced Materials,2010,17(17):2037-2050.
    [12] THOMAS F, BURGESS N C, THOMSON A R, et al. Controlling the assembly of coiled-coil peptide nanotubes [J]. Angewandte Chemie International Edition,2016,55(3):987-991. doi: 10.1002/anie.201509304
    [13] KIM S H, NEDERBERG F, JAKOBS R, et al. A supramolecularly assisted transformation of block-copolymer micelles into nanotubes [J]. Angewandte Chemie International Edition,2009,121(25):4578-4582.
    [14] DING Z, DING M, GAO C, et al. In situ synthesis of coil–coil diblock copolymer nanotubes and tubular ag/polymer nanocomposites by RAFT dispersion polymerization in poly(ethylene glycol) [J]. Macromolecules,2017,50(19):7593-7602. doi: 10.1021/acs.macromol.7b01363
    [15] XIAO-SONG W, WINNIK M A, IAN M. Swellable, redox-active shell-crosslinked organometallic nanotubes [J]. Angewandte Chemie International Edition,2010,43(28):3703-3707.
    [16] REUTHER J F, SIRIWARDANE D A, CAMPOS R, et al. Solvent tunable self-assembly of amphiphilic rod–coil block copolymers with chiral, helical polycarbodiimide segments: Polymeric nanostructures with variable shapes and sizes [J]. Macromolecules,2015,48(19):6890-6899. doi: 10.1021/acs.macromol.5b01564
    [17] 李飞燕, 唐政敏, 蔡春华, 等. 刚-柔嵌段共聚物在有序排列的微米圆盘表面自组装构筑多级结构 [J]. 功能高分子学报,2019,32(3):292-299.

    LI F Y, TANG Z M, CAI C H, et al. Self-assembly of rod-coil block copolymers on orderly arrayed micro-disks: A route towards hierarchical structures [J]. Journal of Functional Polymers,2019,32(3):292-299.
    [18] YAN X, LIU G, LI Z. Preparation and phase segregation of block copolymer nanotube multiblocks [J]. Journal of the American Chemical Society,2004,126(32):10059-10066. doi: 10.1021/ja0479890
    [19] QIU H, HUDSON Z M, WINNIK M A, et al. Micelle assembly. multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles [J]. Science,2015,347(6228):1329-1332. doi: 10.1126/science.1261816
    [20] MICHEL S, ALAIN D. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes [J]. Science,2008,319(5869):1512-1515. doi: 10.1126/science.1153848
    [21] HUANG Z, KANG S K, BANNO M, et al. Pulsating tubules from noncovalent macrocycles [J]. Science,2012,337(6101):1521-1526. doi: 10.1126/science.1224741
    [22] VIRGIL P, DULCEY A E, YOSHIKO M. et al Self-assembly of amphiphilic dendritic dipeptides into helical pores [J]. Nature,2004,430(7001):764-768. doi: 10.1038/nature02770
    [23] EUNJI L, JUNG-KEUN K, MYONGSOO L. Lateral association of cylindrical nanofibers into flat ribbons triggered by "molecular glue" [J]. Angewandte Chemie International Edition,2010,47(34):6375-6378.
    [24] YAO Y, XUE M, CHEN J, et al. An amphiphilic pillar[5]arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption [J]. Journal of the American Chemical Society,2012,134(38):15712-15715. doi: 10.1021/ja3076617
    [25] DIRK V, OZLEM I, MESKERS S C J, et al. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends [J]. Journal of the American Chemical Society,2008,130(24):7721-7735. doi: 10.1021/ja8012598
    [26] SONG S, JIN Y, PARK S H, et al. A low-bandgap alternating copolymer containing the dimethylbenzimidazole moiety [J]. Journal of Materials Chemistry,2010,20(31):6517-6523. doi: 10.1039/c0jm00772b
    [27] ZHUANG W, LUNDIN A, ANDERSSON M R. Computational modelling of donor–acceptor conjugated polymers through engineered backbone manipulations based on a thiophene–quinoxaline alternating copolymer [J]. Journal of Materials Chemistry A,2014,2(7):2202-2212. doi: 10.1039/C3TA14456A
    [28] LAZZARA T D, VEN T G M, WHITEHEAD M A. Nanotube self-assembly of a styrene and maleimide alternating copolymer [J]. Macromolecules,2008,41(18):6747-6751. doi: 10.1021/ma800926a
    [29] YI C, YANG Y, YE Z, et al. Self-assembly and emulsification of poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3, 4-dihydroxyphenylethyl-maleamic acid)]} [J]. Langmuir,2012,28(25):9211-9222. doi: 10.1021/la301605a
    [30] FENIMORE S G, ABEZGAUZ L, DANINO D, et al. Spontaneous alternating copolymer vesicles of alkylmaleimides and vinyl gluconamide [J]. Macromolecules,2009,42(7):2702-2707. doi: 10.1021/ma802472j
    [31] LI C, RASHEED T, TIAN H, et al. Solution self-assembly of an alternating copolymer toward hollow carbon nanospheres with uniform micropores [J]. ACS Macro Letters,2019:331-336.
    [32] LI S, YU C, ZHOU Y. Phase diagrams, mechanisms and unique characteristics of alternating-structured polymer self-assembly via simulations [J]. Science China Chemistry,2018,62(2):226-237.
    [33] CHEN J, YU C, SHI Z, et al. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities [J]. Angewandte Chemie International Edition,2015,127(12):3692-3696.
    [34] DENG H, ZHAO X, DENG L, et al. Reactive oxygen species activated nanoparticles with tumor acidity internalization for precise anticancer therapy [J]. Journal of Controlled Release,2017,255:142-153. doi: 10.1016/j.jconrel.2017.04.002
    [35] POOLE K M, NELSON C E, JOSHI R V, et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease [J]. Biomaterials,2015,41:166-175. doi: 10.1016/j.biomaterials.2014.11.016
    [36] WANG J, SUN X, MAO W, et al. Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy [J]. Advanced Materials,2013,25(27):3670-3676. doi: 10.1002/adma.201300929
  • 加载中
图(7)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  33
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 网络出版日期:  2021-09-16

目录

    /

    返回文章
    返回