高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锌配位的石墨烯偶氮苯光热材料

高文超 冯奕钰 封伟

高文超, 冯奕钰, 封伟. 基于锌配位的石墨烯偶氮苯光热材料[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210404001
引用本文: 高文超, 冯奕钰, 封伟. 基于锌配位的石墨烯偶氮苯光热材料[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210404001
GAO Wenchao, FENG Yiyu, FENG Wei. Graphene/Azobenzene Photothermal Material Based on Zinc Coordination[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210404001
Citation: GAO Wenchao, FENG Yiyu, FENG Wei. Graphene/Azobenzene Photothermal Material Based on Zinc Coordination[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210404001

基于锌配位的石墨烯偶氮苯光热材料

doi: 10.14133/j.cnki.1008-9357.20210404001
基金项目: 国家自然科学基金重点项目(51633007);国家自然科学基金面上项目(51973152)
详细信息
    作者简介:

    高文超(1996—),男,硕士生,主要研究方向为光热能复合材料的制备。E-mail:gaowc@tju.edu.cn

    通讯作者:

    封 伟,E-mail:weifeng@tju.edu.cn

  • 中图分类号: O625.64

Graphene/Azobenzene Photothermal Material Based on Zinc Coordination

  • 摘要: 为了提高偶氮苯基复合材料的能量密度,通过锌离子(Zn2+)与接枝到还原氧化石墨烯上的4-硝基-4′-氨基偶氮苯(AGO)配位的方法,成功制备出了具有阴阳离子相互作用的偶氮苯-石墨烯复合材料(Zn-AGO)。研究表明,石墨烯模板上偶氮苯的光异构化和离子可逆相互作用的协同效果使材料能量密度大幅提高。在紫外光(365 nm)照射4 h后,Zn-AGO的能量密度达到最大值(504.2 J/g),约为AGO的1.69倍。

     

  • 图  1  AGO 的合成

    Figure  1.  Synthesis of AGO

    图  2  Zn-AGO的制备示意图

    Figure  2.  Schematic diagram of preparation of Zn-AGO

    图  3  Zn-AGO的(a) FT-IR光谱和(b)XPS能谱

    Figure  3.  (a) FT-IR spectra and (b) XPS pattern of Zn-AGO

    图  4  样品的FESEM照片

    Figure  4.  FESEM images of samples

    图  5  (a) AGO 和Zn-AGO,(b) 不同紫外(365 nm)照射时间的Zn-AGO的DSC曲线

    Figure  5.  DSC curves of (a) AGO and Zn-AGO, (b) Zn-AGO under different irradiation time of UV (365 nm)

  • [1] BALZANI V, CREDI A, VENTURI M. Photochemical conversion of solar energy [J]. Chemsuschem,2010,1(1-2):26-58.
    [2] KHRIBICH A, KACEM R H, DAKHLAOUI A. Causality nexus of renewable energy consumption and social development: Evidence from high-income countries [J]. Renewable Energy,2021,169:14-22. doi: 10.1016/j.renene.2021.01.005
    [3] DONG L, FENG Y, WANG L, et al. Azobenzene-based solar thermal fuels: Design, properties, and applications [J]. Chemical Society Reviews,2018,47(19):7339-7368. doi: 10.1039/C8CS00470F
    [4] ORREGO-HERNÁNDEZ J, DREOS A, MOTH-POULSEN K. Engineering of norbornadiene/quadricyclane photoswitches for molecular solar thermal energy storage applications [J]. Accounts of Chemical Research,2020,53(8):1478−1487.
    [5] HAN G D, PARK S S, LIU Y, et al. Photon energy storage materials with high energy densities based on diacetylene–azobenzene derivatives [J]. Journal of Materials Chemistry A,2016,4(41):16157-16165. doi: 10.1039/C6TA07086H
    [6] LANGHALS H. Color chemistry. Synthesis, properties and applications of organic dyes and pigments [J]. Angewandte Chemie International Edition,2004,43(40):5291-5292. doi: 10.1002/anie.200385122
    [7] HARTLEY G S. The cis-form of azobenzene [J]. Nature,1937,140(3537):281-281.
    [8] WU X, YIN Q, HUANG Q, et al. Rational designing an azo colorimetric sensor with high selectivity and sensitivity for uranium environmental monitoring [J]. Analytica Chimica Acta,2020,1140:153-167. doi: 10.1016/j.aca.2020.10.005
    [9] GARCIA-AMOROS J, FINKELMANN H, VELASCO D. Influence of the photo-active azo cross-linker spacer on the opto-mechanics of polysiloxane elastomer actuators [J]. Journal of Materials Chemistry,2011,21 (4):1094-1101. doi: 10.1039/C0JM02502J
    [10] MANICKASUNDARAM S, KANNAN P, HASSAN Q M A, et al. Azo dye based poly- (alkyloxymethacrylate)s and their spacer effect on optical data storage [J]. Journal of Materials Science-Materials in Electronics,2008,19 (11):1045-1053. doi: 10.1007/s10854-007-9450-y
    [11] PRAKASH S, SOMIYA G, ELAVARASAN N, et al. Synthesis and characterization of novel bioactive azo compounds fused with benzothiazole and their versatile biological applications [J]. Journal of Molecular Structure,2021,1224:129016. doi: 10.1016/j.molstruc.2020.129016
    [12] KNIE C, UTECHT M, ZHAO F, et al. Ortho-fluoroazobenzenes: Visible light switches with very long-lived z isomers [J]. Chemistry,2014,20(50):16492-16501. doi: 10.1002/chem.201404649
    [13] YANG W, FENG Y, SI Q, et al. Efficient cycling utilization of solar-thermal energy for thermochromic displays with controllable heat output [J]. Journal of Materials Chemistry A,2019,7 (1):97-106. doi: 10.1039/C8TA05333B
    [14] CHEN M, YAO B, KAPPL M, et al. Entangled azobenzene-containing polymers with photoinduced reversible solid-to-liquid transitions for healable and reprocessable photoactuators [J]. Advanced Functional Materials,2020,30(4):1906752.
    [15] DREOS A, WANG Z, UDMARK J, et al. Liquid norbornadiene photoswitches for solar energy storage [J]. Advanced Energy Materials,2018,8 (18):1703401. doi: 10.1002/aenm.201703401
    [16] TIAN C, SUN L, TAO X, et al. Self-assembly and photo-responsiveness of hyperbranched azopolymers [J]. Journal of Functional Polymers,2020,033(003):284-289.
    [17] LIU H, FENG Y, FENG W. Alkyl-grafted azobenzene molecules for photo-induced heat storage and release via integration function of phase change and photoisomerization [J]. Composites Communications,2020,21:100402. doi: 10.1016/j.coco.2020.100402
    [18] LIU H, TANG J, DONG L, et al. Optically triggered synchronous heat release of phase‐change enthalpy and photo‐thermal energy in phase‐change materials at low temperatures [J]. Advanced Functional Materials,2020,31 (6):2008496.
    [19] KOLPAK A M, GROSSMAN J C. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels [J]. Nano Letters,2011,11 (8):3156-3162. doi: 10.1021/nl201357n
    [20] LUO W, FENG Y, QIN C, et al. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds [J]. Nanoscale,2015,7 (39):16214-16221. doi: 10.1039/C5NR03558A
    [21] HAN J, FENG Y, LI Y, et al. Recent research progress in stimuli-responsive graphene materials [J]. Journal of functional polymers,2019,32(004):411-420.
    [22] DONG L, CHEN Y, ZHAI F, et al. Azobenzene-based solar thermal energy storage enhanced by gold nanoparticles for rapid, optically-triggered heat release at room temperature [J]. Journal of Materials Chemistry A,2020,8 (36):18668-18676. doi: 10.1039/D0TA06913B
    [23] SHI Y, WANG M, MA C, et al. A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer [J]. Nano Letters,2015,15(9):6276-6281. doi: 10.1021/acs.nanolett.5b03069
    [24] MOZHDEHI D, AYALA S, CROMWELL O R, et al. Self-healing multiphase polymers via dynamic metal-ligand interactions [J]. Journal of the American Chemical Society,2014,136(46):16128-16131. doi: 10.1021/ja5097094
    [25] YU H, ZHANG B, BULIN C, et al. High-efficient synthesis of graphene oxide based on improved hummers method [J]. Scientific Reports,2016,6:36143. doi: 10.1038/srep36143
    [26] 汪利娜, 张弛道, 王新灵, 等. 超弹性石墨烯气凝胶的制备及其性能 [J]. 功能高分子学报,2018,31 (5):462-467.

    WANG L, ZHANG C, WANG X, et al. Preparation and properties of ultra-elastic graphene aerogel [J]. Journal of Functional Polymer,2018,31 (5):462-467.
    [27] RAMU A G, YANG D J, OLAYAN E, et al. Synthesis of hierarchically structured T-ZnO-rGO-PEI composite and their catalytic removal of colour and colourless phenolic compounds [J]. Chemosphere,2021,267(3):129245.
    [28] YAN Q, ZHANG Y, DANG Y, et al. Solid-state high-power photo heat output of 4-((3, 5-dimethoxyaniline)-diazenyl)-2-imidazole/graphene film for thermally controllable dual data encoding/reading [J]. Energy Storage Materials,2020,24:662-669. doi: 10.1016/j.ensm.2019.06.005
  • 加载中
图(5)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  49
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-04
  • 网络出版日期:  2021-06-09

目录

    /

    返回文章
    返回