高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体辅助纳米涂层的构建及其成骨性能

郭西萌 金莉莉 李春旺 何宏燕 刘昌胜

郭西萌, 金莉莉, 李春旺, 何宏燕, 刘昌胜. 等离子体辅助纳米涂层的构建及其成骨性能[J]. 功能高分子学报, 2022, 35(1): 54-60. doi: 10.14133/j.cnki.1008-9357.20210330004
引用本文: 郭西萌, 金莉莉, 李春旺, 何宏燕, 刘昌胜. 等离子体辅助纳米涂层的构建及其成骨性能[J]. 功能高分子学报, 2022, 35(1): 54-60. doi: 10.14133/j.cnki.1008-9357.20210330004
GUO Ximeng, JIN Lili, LI Chunwang, HE Hongyan, LIU Changsheng. Construction and Osteogenic Properties of Plasma-Assisted Nano-Coating[J]. Journal of Functional Polymers, 2022, 35(1): 54-60. doi: 10.14133/j.cnki.1008-9357.20210330004
Citation: GUO Ximeng, JIN Lili, LI Chunwang, HE Hongyan, LIU Changsheng. Construction and Osteogenic Properties of Plasma-Assisted Nano-Coating[J]. Journal of Functional Polymers, 2022, 35(1): 54-60. doi: 10.14133/j.cnki.1008-9357.20210330004

等离子体辅助纳米涂层的构建及其成骨性能

doi: 10.14133/j.cnki.1008-9357.20210330004
基金项目: 国家自然科学基金创新群体项目(51621002);国家重点研发计划战略性国际科技创新合作重点专项(SQ2018YF020328)
详细信息
    作者简介:

    郭西萌(1994—),女,硕士,主要研究方向为骨修复生物材料。E-mail:simone.guo1111@gmail.com

    通讯作者:

    何宏燕,E-mail:hyhe@ecust.edu.cn

  • 中图分类号: R318.08

Construction and Osteogenic Properties of Plasma-Assisted Nano-Coating

  • 摘要: 通过氧等离子体处理,在聚对苯二甲酸乙二酯(PET)表面引入羟基,提高了其表面的亲水性。利用静电吸附等方式在PET材料表面先后载入表没食子儿茶素没食子酸酯(EGCG)、纤维黏连蛋白(Fn)和骨形态发生蛋白-2 (rhBMP-2),构建了rhBMP-2/EGCG/Fn有机组装的纳米涂层,改性后的PET表面表现出优异的细胞相容性,rhBMP-2的高效载入、活性维持、以及缓慢释放,赋予了改性表面高诱骨活性和成骨分化能力。

     

  • 图  1  B/E-Fn-PET纳米涂层的制备

    Figure  1.  Preparation of the nano-coating B/E-Fn-PET

    图  2  PET氧等离子体处理(a)前(b)后和(c)B/Fn-PET的水接触角

    Figure  2.  Water contact angle of PET (a) before and (b) after treated by oxygen plasma and (c) B/Fn-PET

    图  3  样品的SEM照片

    Figure  3.  SEM images of samples

    图  4  不同纳米涂层表面的AFM表观形貌比较

    Figure  4.  Comparison of AFM surface morphologies on the different nano-coating surfaces

    图  5  rhBMP-2的累积释放曲线

    Figure  5.  Cumulative release curves of rhBMP-2

    图  6  rBMSCs在PET、E-PET和E-Fn-PET表面的形态

    Figure  6.  rBMSCs morphology on the surfaces of PET, E-PET, and E-Fn-PET

    图  7  rBMSCs在不同PET表面上培养后的细胞增殖行为

    Figure  7.  Cell proliferation of rBMSCs after cultured on the surfaces of different PET

    图  8  rBMSCs在各PET样品中培养7 d后的ALP染色比较

    Figure  8.  ALP staining of rBMSCs on different PET surfaces cultured for 7 d

    图  9  rBMSCs在各PET样品中培养21 d后的茜素红染色

    Figure  9.  Alizarin red S staining of rBMSCs on different PET surfaces cultured for 21 d

  • [1] LU W, XU J, DONG S, et al. Anterior cruciate ligament reconstruction in a rabbit model using a decellularized allogenic semitendinous tendon combined with autologous bone marrow-derived mesenchymal stem cells [J]. Stem Cells Translational Medicine,2019,8(9):971-982. doi: 10.1002/sctm.18-0132
    [2] HERZBERG S D, MOTUAPUAKA M L, LAMBERT W, et al. The effect of menstrual cycle and contraceptives on ACL injuries and laxity: A systematic review and meta-analysis [J]. Orthopaedic Journal Sports Medicine,2017,5(7):2325967117718781.
    [3] LI H, LI J, JIANG J, et al. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction [J]. Acta Biomaterialia,2017,54:399-410. doi: 10.1016/j.actbio.2017.03.014
    [4] CAI J, WAN F, AI C, et al. The effect of remnant preservation on tibial tunnel enlargement in anterior cruciate ligament reconstruction with polyethylene terephthalate artificial ligament in a large animal model [J]. Journal of Knee Surgery,2019,32(11):1094-1101. doi: 10.1055/s-0038-1675599
    [5] 王春莲, 孟宪辉, 赵丽娜, 等. 乙烯吡咯烷酮对PET薄膜的表面接枝改性 [J]. 功能高分子学报,2014,27(1):83-91.

    WANG C L, MENG X H, ZHAO L N, et al. Surface graft copolymerization of N-vinyl pyrrolidone on poly(ethylene terephthalate) films [J]. Journal of Functional Polymers,2014,27(1):83-91.
    [6] 侯佳, 方向晨, 白富栋, 等. 醋酸纤维素/PET接枝共聚物的制备及性能 [J]. 功能高分子学报,2017,30(2):197-201.

    HOU J, FANG X C, BAI F D, et al. Preparation and properties of cellulose acetate grafted PET [J]. Journal of Functional Polymers,2017,30(2):197-201.
    [7] OUYANG B, ZHANG Y, WANG Y, et al. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance [J]. Journal of Materials Chemistry A,2016,4(45):17801-17808. doi: 10.1039/C6TA08155J
    [8] DAI Z, BAO W, LI S, et al. Enhancement of polyethylene terephthalate artificial ligament graft osseointegration using a periosteum patch in a goat model [J]. International Journal of Sports Medicine,2016,37(6):493-499. doi: 10.1055/s-0042-102258
    [9] JIN S K, LEE J H, HONG J H, et al. Enhancement of osseointegration of artificial ligament by nano-hydroxyapatite and bone morphogenic protein-2 into the rabbit femur [J]. Tissue Engineering and Regenerative Medicine,2016,13(3):284-296. doi: 10.1007/s13770-016-9051-z
    [10] KORKER-HEAD C A. Potential applications and delivery strategies for bone morphogenetic proteins [J]. Advanced Drug Delivery Reviews,2000,43(1):65-92. doi: 10.1016/S0169-409X(00)00078-8
    [11] HAIDAR Z S, HAMDY R C, TABRIZIAN M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery [J]. Biotechnology Letters,2009,31(12):1817-1824. doi: 10.1007/s10529-009-0099-x
    [12] VISSER R, ARRABAL P M, BECERRA J, et al. The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo [J]. Biomaterials,2009,30(11):2032-2037. doi: 10.1016/j.biomaterials.2008.12.046
    [13] AKHAVAN B, CROES M, WISE S G, et al. Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications [J]. Applied Materials Today,2019,16:456-473. doi: 10.1016/j.apmt.2019.07.002
    [14] ROBERTS J N, SAHOO J K, MCNAMARA L E, et al. Dynamic surfaces for the study of mesenchymal stem cell growth through adhesion regulation [J]. ACS Nano,2016,10(7):6667-6679. doi: 10.1021/acsnano.6b01765
    [15] GU H, XUE Z, WANG M, et al. Effect of hydroxyapatite surface on BMP-2 biological properties by docking and molecular simulation approaches [J]. Journal of Physical Chemistry B,2019,123(15):3372-3382. doi: 10.1021/acs.jpcb.9b01982
    [16] KISIEL M, MARTINO M M, VENTURA M, et al. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment [J]. Biomaterials,2013,34(3):704-712. doi: 10.1016/j.biomaterials.2012.10.015
    [17] KAMON M, ZHAO R, SAKAMOTO K. Green tea polyphenol (-)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells [J]. Cell Biology International,2009,34(1):109-116.
    [18] LI C, VEPARI C, JIN H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering [J]. Biomaterials,2006,27(16):3115-3124. doi: 10.1016/j.biomaterials.2006.01.022
    [19] 文德敏, 周燕, 华平, 等. 人胚胎骨髓基质干细胞的长期培养及体外成骨特性 [J]. 华东理工大学学报(自然科学版),2004,30(3):250-253. doi: 10.3969/j.issn.1006-3080.2004.03.003

    WEN D M, ZHOU Y, HUA P, et al. Long-term culture and differentiation into osteogenic cells of human bone marrow stromal stem cells [J]. Journal of East China University of Science and Technology,2004,30(3):250-253. doi: 10.3969/j.issn.1006-3080.2004.03.003
  • 加载中
图(9)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  211
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2022-01-13

目录

    /

    返回文章
    返回