高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯醇/ε-聚赖氨酸水凝胶伤口敷料的制备及性能

范瑶 梁文城 王友长 郎美东

范瑶, 梁文城, 王友长, 郎美东. 聚乙烯醇/ε-聚赖氨酸水凝胶伤口敷料的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210330002
引用本文: 范瑶, 梁文城, 王友长, 郎美东. 聚乙烯醇/ε-聚赖氨酸水凝胶伤口敷料的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210330002
FAN Yao, LIANG Wencheng, WANG Youchang, LANG Meidong. Preparation and Properties of Polyvinyl Alcohol/ε-Polylysine Hydrogel Wound Dressing[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210330002
Citation: FAN Yao, LIANG Wencheng, WANG Youchang, LANG Meidong. Preparation and Properties of Polyvinyl Alcohol/ε-Polylysine Hydrogel Wound Dressing[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210330002

聚乙烯醇/ε-聚赖氨酸水凝胶伤口敷料的制备及性能

doi: 10.14133/j.cnki.1008-9357.20210330002
基金项目: 国家重点研发计划(2016YFC110703)
详细信息
    作者简介:

    范瑶(1995—),女,四川人,硕士,主要研究方向为抗菌生物材料。E-mail:18328068735@163.com

    通讯作者:

    郎美东,E-mail:mdlang@ecust.edu.cn

  • 中图分类号: R318.08

Preparation and Properties of Polyvinyl Alcohol/ε-Polylysine Hydrogel Wound Dressing

  • 摘要: 在聚乙烯醇(PVA)水溶液中引入ε-聚赖氨酸(ε-PL)和柠檬酸(CA),采用冻融法制备具有抗菌性能的复合水凝胶(PVCL)。通过傅里叶红外光谱(FT-TR)仪、扫描电子显微镜(SEM)、差示扫描量热(DSC)仪和万能拉伸试验机对PVCL复合水凝胶的结构和性能进行表征。以抗菌测试、溶血率测试和细胞毒性测试表征复合水凝胶的生物性能。结果表明,加入CA可以提高PVA水凝胶的力学性能,水凝胶的拉伸强度从1.8 MPa增加到3.0 MPa,断裂伸长率从355.9%增加到426.5%。ε-PL为水凝胶提供优异的抗菌活性,当ε-PL的质量分数分别为5%和7%时PVCL对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)的抗菌率均接近100%。此外,PVCL复合水凝胶具有优异的血液相容性和细胞相容性。

     

  • 图  1  PVA基水凝胶的制备过程

    Figure  1.  Preparation process of PVA based hydrogels

    图  2  水凝胶的FT-IR谱图

    Figure  2.  FT-IR spectra of hydrogels

    图  3  水凝胶的扫描电镜图

    Figure  3.  SEM images of hydrogels

    a—PVA;b—PVCL-0;c—PVCL-1;d—PVCL-3;e—PVCL-5;f—PVCL-7

    图  4  水凝胶的力学性能

    Figure  4.  Mechanical properties of hydrogels

    图  5  水凝胶的溶胀率

    Figure  5.  Swelling rates of hydrogels

    图  6  水凝胶对大肠杆菌和金黄色葡萄球菌的抗菌效果图(a)和抗菌率(b)

    Figure  6.  Antibacterial effect of hydrogel against E.coli and S.aureus (a) and antibacterial rate (b)

    图  7  水凝胶的溶血效果图(a)和溶血率(b)

    Figure  7.  Hemolysis effect (a) and hemolysis rates (b) of hydrogels

    图  8  水凝胶的细胞存活率(a)和活/死细胞染色图(b)

    Figure  8.  Cell viability of hydrogels (a) and images of living/dead cell staining (b)

    表  1  水凝胶的DSC的分析结果

    Table  1.   DSC analysis results of hydrogels

    SampleTm/℃ΔHm /(J·g−1χc/%
    PVA220.957.341.4
    PVCL-0222.861.946.1
    PVCL-1225.069.752.4
    PVCL-3222.659.545.7
    PVCL-5223.253.642.0
    PVCL-7221.650.240.2
    下载: 导出CSV
  • [1] GALLO R. Human skin is the largest epithelial surface for interaction with microbes [J]. Journal of Investigative Dermatology,2017,137(6):1213-1214. doi: 10.1016/j.jid.2016.11.045
    [2] MAYANDI V, WEN C A, DHAND C, et al. Multifunctional antimicrobial nanofiber dressings containing ε-polylysine for the eradication of bacterial bioburden and promotion of wound healing in critically colonized wounds [J]. ACS Applied Materials & Interfaces,2020,12(14):15989-16005.
    [3] JATOI A W, OGASAWARA H, KIM I S, et al. Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications [J]. Materials Letters,2019,241:168-171. doi: 10.1016/j.matlet.2019.01.084
    [4] 周姝妤, 许淑琴, 梁李园, 等. 胶原蛋白/纤维素纳米晶体敷料的制备及性能 [J]. 功能高分子学报,2020,33(1):78-85.

    ZHOU S Y, XU S Q, LIANG L Y, et al. Preparation and properties of collagen/cellulose nanocrystalline dressing [J]. Journal of Functional Polymers,2020,33(1):78-85.
    [5] SHYNA S, SHANTI K A, PRABHA D, et al. A nonadherent chitosan-polyvinyl alcohol absorbent wound dressing prepared via controlled freeze-dry technology [J]. International Journal of Biological Macromolecules,2020,150:129-140. doi: 10.1016/j.ijbiomac.2020.01.292
    [6] YE S, JIANG L, WU J, et al. Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: In vitro and in vivo evaluation [J]. ACS Applied Materials & Interfaces,2018,10(6):5862-5870.
    [7] XU W, SONG Q, XU J, et al. Supramolecular hydrogels fabricated from supramonomers: A novel wound dressing material [J]. ACS Applied Materials & Interfaces,2017,9(13):11368-11372.
    [8] BAO F, PEI G, WU Z, et al. Bioactive self-pumping composite wound dressings with micropore array modified janus membrane for enhanced diabetic wound healing [J]. Advanced Functional Materials,2020,30(49):2005422. doi: 10.1002/adfm.202005422
    [9] GONG W, WEI D, ZHANG S, et al. Nonleaching antimicrobial poly(vinyl alcohol)/polyhexamethylene guanidine hydrochloride hydrogels reinforced by hydrogen bond [J]. Polymers for Advanced Technologies,2020,31(12):3238-3246. doi: 10.1002/pat.5048
    [10] LI Z, XU W, WANG X, et al. Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity [J]. European Polymer Journal,2021,146:110253. doi: 10.1016/j.eurpolymj.2020.110253
    [11] FANG H, WANG J, LI L, et al. A novel high-strength poly(ionic liquid)/PVA hydrogel dressing for antibacterial applications [J]. Chemical Engineering Journal,2019,365:153-164. doi: 10.1016/j.cej.2019.02.030
    [12] FAN L, YANG H, YANG J, et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings [J]. Carbohydrate Polymers,2016,146:427-434. doi: 10.1016/j.carbpol.2016.03.002
    [13] GHORPADE V S, DIAS R J, MALI K K, et al. Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs [J]. Journal of Drug Delivery Science and Technology,2019,52:421-430. doi: 10.1016/j.jddst.2019.05.013
    [14] SALIHU R, RAZAK S I A, ZAWAWI N A, et al. Citric acid: A green cross-linker of biomaterials for biomedical applications [J]. European Polymer Journal,2021,146:110271. doi: 10.1016/j.eurpolymj.2021.110271
    [15] 杨上莹, 袁卉华, 易兵成, 等. 柠檬酸修饰的壳聚糖水凝胶的制备与表征 [J]. 功能高分子学报,2018,31(3):232-240.

    YANG S Y, YUAN H H, YI B C, et al. Fabrication and characterization of citric acid modified chitosan hydrogel [J]. Journal of Functional Polymers,2018,31(3):232-240.
    [16] MA R, WANG Y, QI H, et al. Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: In vitro and in vivo evaluation [J]. Composites Part B: Engineering,2019,167:396-405. doi: 10.1016/j.compositesb.2019.03.006
    [17] LI T, WEN C, DONG Y, et al. Effect of ε-polylysine addition on κ-carrageenan gel properties: Rheology, water mobility, thermal stability and microstructure [J]. Food Hydrocolloids,2019,95:212-218. doi: 10.1016/j.foodhyd.2019.04.027
    [18] LI Y, YE Q, HOU W, et al. Development of antibacterial ε-polylysine/chitosan hybrid films and the effect on citrus [J]. International Journal of Biological Macromolecules,2018,118(Pt B):2051-2056.
    [19] SHEN C, ISLAM M T, MASUDA Y, et al. Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in salmonella typhimurium [J]. Applied Microbiology and Biotechnology,2020,104(12):5427-5436. doi: 10.1007/s00253-020-10575-2
    [20] DAI X M, AN J, WANG Y, et al. Antibacterial amphiphiles based on ε-polylysine: Synthesis, mechanism of action, and cytotoxicity [J]. RSC Advances,2015,5(85):69325-69333. doi: 10.1039/C5RA10393B
    [21] ZHANG Y, WANG F, HUANG Q, et al. Layer-by-layer immobilizing of polydopamine-assisted ε-polylysine and gum arabic on titanium: Tailoring of antibacterial and osteogenic properties [J]. Materials Science & Engineering C,2020,110:110690.
    [22] CHENG W, WANG M, CHEN M, et al. Injectable antibacterial antiinflammatory molecular hybrid hydrogel dressing for rapid MDRB-infected wound repair and therapy [J]. Chemical Engineering Journal,2021,409:128140. doi: 10.1016/j.cej.2020.128140
    [23] LIU S, LIU X, REN Y, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-polylysine hydrogel with self-healing and antibacterial properties for wound healing [J]. ACS Applied Materials & Interfaces,2020,12(25):27876-27888.
    [24] YU Z, RAO G, WEI Y, et al. Preparation, characterization, and antibacterial properties of biofilms comprising chitosan and ε-polylysine [J]. International Journal of Biological Macromolecules,2019,141:545-552. doi: 10.1016/j.ijbiomac.2019.09.035
    [25] POPESCU M C. Structure and sorption properties of CNC reinforced PVA films [J]. International Journal of Biological Macromolecules,2017,101:783-790. doi: 10.1016/j.ijbiomac.2017.03.168
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-30
  • 网络出版日期:  2021-05-31

目录

    /

    返回文章
    返回