高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁和CO2双响应型可降解微凝胶对阴离子染料的可逆吸附与释放

张银山 毛曦 刘通 郭赞如 熊乐艳 刘永鑫

张银山, 毛曦, 刘通, 郭赞如, 熊乐艳, 刘永鑫. 磁和CO2双响应型可降解微凝胶对阴离子染料的可逆吸附与释放[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322003
引用本文: 张银山, 毛曦, 刘通, 郭赞如, 熊乐艳, 刘永鑫. 磁和CO2双响应型可降解微凝胶对阴离子染料的可逆吸附与释放[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322003
ZHANG Yinshan, MAO Xi, LIU Tong, GUO Zanru, XIONG Leyan, LIU Yongxin. Reversible Adsorption/Release for Anionic Dyes of Magnetic and CO2 Dual-Responsive Degradable Microgels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322003
Citation: ZHANG Yinshan, MAO Xi, LIU Tong, GUO Zanru, XIONG Leyan, LIU Yongxin. Reversible Adsorption/Release for Anionic Dyes of Magnetic and CO2 Dual-Responsive Degradable Microgels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322003

磁和CO2双响应型可降解微凝胶对阴离子染料的可逆吸附与释放

doi: 10.14133/j.cnki.1008-9357.20210322003
基金项目: 国家自然科学基金(21802041,51563009,21865009);江西省杰出青年基金(20202ACBL214001);江西省研究生创新基金(YC 2019-S266)
详细信息
    作者简介:

    张银山(1994—),男,硕士,主要研究方向为功能高分子材料。E-mail:993871361@qq.com

    通讯作者:

    郭赞如,E-mail:guozanru@ecjtu.edu.cn

Reversible Adsorption/Release for Anionic Dyes of Magnetic and CO2 Dual-Responsive Degradable Microgels

  • 摘要: 首先以甲基丙烯酸二乙氨基乙酯为单体,通过反相悬浮聚合制备了CO2响应型可降解微凝胶;然后在该微凝胶中原位合成Fe3O4磁性纳米粒子,制备了磁和CO2双响应型可降解微凝胶。通过傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等对微凝胶的组成和结构进行了表征。结果表明:CO2响应之后的微凝胶对阴离子染料可进行选择性吸附,对茜素红的最大吸附量为1413 mg/g;微凝胶的磁响应性使其能够得到便捷的分离回收,被吸附的染料能够通过碱洗释放,并且在CO2刺激下微凝胶又能够重复使用。

     

  • 图  1  (a)微凝胶样品的FT-IR谱图和(b)样品的TGA曲线

    Figure  1.  (a)FT-IR spectra and(b)TGA curves of microgels samples

    图  2  m-MG的(a)光学显微镜、(b)SEM和(c)TEM照片

    Figure  2.  (a)Optical microscope, (b)SEM and (c)TEM images

    图  3  (a)光学显微镜及(b)SEM照片;(c)CO2和N2交替刺激后的ζ电位图

    Figure  3.  (a)Optical microscope and (b)SEM image of m-MG after CO2 stimulation;(c)ζ Potential of m-MG during cycling CO2/N2 stimulation

    图  4  (a)MG与m-MG的磁滞回曲线图(插图为微凝胶在磁场中的表现,黑色样品为m-MG,白色样品为MG);(b)m-MG的降解曲线;(c)降解过程中的微凝胶形貌

    Figure  4.  (a)Magnetization curves of MG and m-MG (Inset is photo of m-MG(black)and MG(white)in external magnetic field );(b)Degradation curves of m-MG; (c)Appearance of m-MG during degradation process

    图  5  (a)m-MG对混合染料溶液的选择性吸附的UV-Vis光谱图;(b)染料在溶液中浓度和比例的变化;(c)染料的热力学等温吸附曲线;(d)Langmuir等温吸附模型拟合线;(e)Freundlich等温吸附模型拟合线;(f)染料的动力学吸附曲线;(g)准1级动力学拟合;(h)准2级动力学拟合;(i)Weber-Morris内扩散模型拟合

    Figure  5.  (a)UV-Vis spectra of m-MG selective adsorption of mixed dyes solution;(b)Variation of the concentration of dyes and its ratio;(c)Thermodynamic isothermal adsorption curves of dyes;(d)Langmuir isothermal adsorption model;(e)Freundlich isothermal adsorption model;(f)Kinetic adsorption curves of dyes;(g)Pseudo-first-order kinetics;(h)Pseudo-second-order kinetics;(i)Weber-Morris internal diffusion model

    图  6  (a)磁力分离吸附染料后的m-MG;(b)m-MG的循环吸附/释放性;(c)m-MG在DTT作用下降解释放AR

    Figure  6.  (a)Separation of m-MG under external magnetic field after adsorption of dyes;(b)Reusability performance of m-MG;(c)Release of AR by degradation of m-MG upon the treatment of DTT

    表  1  m-MG吸附染料的等温吸附拟合参数

    Table  1.   Isotherm adsorgtion fitting parameters of m-MG adsorption dyes

    DyesQmax,exp/(mg·g-1LangmuirFreundlich
    Qmax,cal/(mg·g-1KL RLR2KFnR2
    AR14131 460.7260.044 6280.06950.976 22100.12.988290.93348
    ARAC823877.1930.026 0160.11370.996 2954.852.429660.95973
    MEB734826.4460.0117430.22110.997 326.990.547240.82175
    PS673699.3010.0443690.06990.988 2688.442.632620.96144
    下载: 导出CSV

    表  2  m-MG吸附染料的吸附动力学拟合参数

    Table  2.   Fitting parameters of adsorption kinetics of m-MG adsorbed dyes

    DyesPseudo-first-order model Pseudo-second -order model Weber-Morris model
    Qe/(mg·g−1R2 Qe/(mg·g−1R2 R2
    AR1314.66900.94483 1550.46200.99075 0.95129
    ARAC693.92230.96111 970.87380.99483 0.90852
    MEB391.10650.87950 854.70090.99890 0.75012
    PS674.72150.96617819.67210.995070.92160
    下载: 导出CSV
  • [1] CRINI G. Non-conventional low-cost adsorbents for dye removal: A review [J]. Bioresource Technology,2006,97(9):1061-1085. doi: 10.1016/j.biortech.2005.05.001
    [2] KAYRANLI B. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution: Isotherm, kinetic and thermodynamic study [J]. Chemical Engineering Journal,2011,173:782-791. doi: 10.1016/j.cej.2011.08.051
    [3] BAYRAMOGLU G, ALTINTAS B, ARICA M Y. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin [J]. Chemical Engineering Journal,2009,152(2-3):339-346. doi: 10.1016/j.cej.2009.04.051
    [4] TOVAR-GÓMEZ R, RIVERA-RAMÍREZ D A, HERNÁNDEZ-MONTOYA V A, et al. Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO3)2-modified carbon [J]. Journal of Hazardous Materials,2012,199-200:290-300. doi: 10.1016/j.jhazmat.2011.11.015
    [5] SHUKLA S R, PAI R S. Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust [J]. Separation and Purification Technology,2005,43(1):1-8. doi: 10.1016/j.seppur.2004.09.003
    [6] DENG J H, ZHANG X R, ZENG G M, et al. Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent [J]. Chemical Engineering Journal,2013,226:189-200. doi: 10.1016/j.cej.2013.04.045
    [7] AHMADIJOKANI F, MOHAMMADKHANI R, AHMADIPOUYA S, et al. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption [J]. Chemical Engineering Journal,2020,399:125346. doi: 10.1016/j.cej.2020.125346
    [8] XU S, YAO Z, ZHANG Y. A covalent organic framework exhibiting amphiphilic selective adsorption toward ionic organic dyes tuned by pH value [J]. European Polymer Journal,2020,133:109764. doi: 10.1016/j.eurpolymj.2020.109764
    [9] DENG S, XU H, JIANG X, et al. Poly(vinyl alcohol) (PVA)-enhanced hybrid hydrogels of hyperbranched poly(ether amine) (HPEA) for selective adsorption and separation of dyes [J]. Macromolecules,2013,46:2399-2406. doi: 10.1021/ma302330w
    [10] HUANG D, WANG F, ZHU J, et al. Stability of polyethylenimine solution-in-liquid paraffin emulsion for preparing polyamine microspheres with potential adsorption for ionic dyes [J]. Asia-Pacific Journal Chemical Engineering,2019,14:2294. doi: 10.1002/apj.2294
    [11] LI B, JIANG X, YIN J. Multi-responsive microgel of hyperbranched poly(ether amine) (hPEA-mGel) for the selective adsorption and separation of hydrophilic fluorescein dyes [J]. Journal of Materials Chemistry,2012,22(34):17976-17983. doi: 10.1039/c2jm33188h
    [12] PARASURAMAN D, SARKER A K, SERPE M J. Poly(N-isopropylacrylamide)-based microgels and their assemblies for organic-molecule removal from water [J]. ChemPhysChem,2012,13(10):2507-2515. doi: 10.1002/cphc.201200025
    [13] GUO Z, CHEN Q, GU H, et al. Giant microgels with CO2-induced on–off, selective, and recyclable adsorption for anionic dyes [J]. ACS Applied Materials and Interfaces,2018,10:38073-38083. doi: 10.1021/acsami.8b13448
    [14] ZHENG X, ZHENG H, XIONG Z, et al. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions [J]. Chemical Engineering Journal,2020,392:123706. doi: 10.1016/j.cej.2019.123706
    [15] 纪旭阳, 张杨, 梁福鑫. pH-磁双响应Janus笼 [J]. 功能高分子学报,2021,34(3):277-283.

    JI X, ZHANG Y, LIANG F. pH and magnetic responsive Janus cage [J]. Journal of Functional Polymers,2021,34(3):277-283.
    [16] PAN Y J, CHEN Y Y, WANG D R, et al. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release [J]. Biomaterials,2012,33(27):6570-6579. doi: 10.1016/j.biomaterials.2012.05.062
    [17] Uber F, H. Die adsorption in losungen Z. [J]. Physical Chemistry,1985,57:387-470.
    [18] HO S, MCKAY G. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Safety and Environmental Protection,1998,76:332-340. doi: 10.1205/095758298529696
    [19] CHEN B, ZHU Z, MA J, et al. Surfactant assisted Ce-Fe mixed oxide decorated multi-walled carbon nanotubes and their arsenic adsorption performance [J]. Journal of materials chemistry A,2013,1:11355-11367. doi: 10.1039/c3ta11827d
    [20] ZHOU A, CHEN W, LIAO L. Comparative adsorption of emerging contaminants in water by functional designed magnetic poly(N-isopropylacrylamide)/ chitosan hydrogels [J]. Science of the Total Environment,2019,671:377-387. doi: 10.1016/j.scitotenv.2019.03.183
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  97
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2021-05-17

目录

    /

    返回文章
    返回