高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度响应型酰腙可逆共价键水凝胶的制备及性能

何元 罗媛媛 刘通 张银山 郭赞如 章家立

何元, 罗媛媛, 刘通, 张银山, 郭赞如, 章家立. 温度响应型酰腙可逆共价键水凝胶的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322002
引用本文: 何元, 罗媛媛, 刘通, 张银山, 郭赞如, 章家立. 温度响应型酰腙可逆共价键水凝胶的制备及性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322002
HE Yuan, LUO Yuanyuan, LIU Tong, ZHANG Yinshan, GUO Zanru, ZHANG Jiali. Preparation and Properties of Temperature-Responsive Hydrogels Based on Acylhydrazone Reversible Covalent Bonds[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322002
Citation: HE Yuan, LUO Yuanyuan, LIU Tong, ZHANG Yinshan, GUO Zanru, ZHANG Jiali. Preparation and Properties of Temperature-Responsive Hydrogels Based on Acylhydrazone Reversible Covalent Bonds[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322002

温度响应型酰腙可逆共价键水凝胶的制备及性能

doi: 10.14133/j.cnki.1008-9357.20210322002
基金项目: 国家自然科学基金(21802041,51563009,21865009);江西省杰出青年基金(20202ACBL214001)
详细信息
    作者简介:

    何元:何 元(1994—),男,硕士,主要研究方向为功能高分子材料。E-mail:961000859@qq.com

    通讯作者:

    郭赞如,E-mail:guozanru@ecjtu.edu.cn

  • 中图分类号: O633

Preparation and Properties of Temperature-Responsive Hydrogels Based on Acylhydrazone Reversible Covalent Bonds

  • 摘要: 首先,通过可逆加成-断裂转移(RAFT)聚合制备了丙烯酰胺(AM)、双丙酮丙烯酰胺(DAAM)和N-异丙基丙烯酰胺(NIPAM)的共聚物(PAM-co-PDAAM-co-PNIPAM);然后,使PAM-co-PDAAM-co-PNIPAM与己二酸二酰肼(ADH)反应后,得到了具有温度和pH双重响应性的水凝胶。通过核磁共振氢谱(1H-NMR)和凝胶渗透色谱(GPC)、流变仪、扫描电镜(SEM)以及傅里叶红外光谱(FT-IR)对共聚物和水凝胶的结构和组成,以及水凝胶的温度和pH双重响应行为进行了研究。研究表明,该水凝胶具有温度调控的自愈合性,对药物阿霉素(Dox)表现出pH和温度双重响应的可控释放行为。

     

  • 图  1  PAM-co-PDAAM-co-PNIPAM的(a)红外谱图和(b) 1H-NMR图谱

    Figure  1.  (a)FT-IR and (b)1H-NMR spectra of PAM-co-PDAAM-co-PNIPAM

    图  2  (a)共聚物溶液透光率随温度的变化曲线;(b)共聚物的浊点随AM摩尔分数的变化

    Figure  2.  (a)Temperature dependence of optical transmittance for polymer aqueous solution; (b)Cloud point of polymers varied with the mole fraction of AM

    图  3  (a)水凝胶的模量对频率动态流变关系;(b)不同酰肼与酮羰基比水凝胶(w(HG5)=10%)的模量对频率动态流变关系;(c)HG5(w(HG5)=10%)的储能模量G′ 随酰肼与酮羰基比例的变化;(d)HG5的模量对频率的动态流变关系

    Figure  3.  (a)Dynamic rheological curves of hydrogels modulus changing with frequency; (b)Dynamic rheology of HG5(w(HG5)=10%)prepared by different hydrazide/ketocarbonyl mole ratio with frequency change; (c) G' of HG5(w (HG5)=10%)varies with the mole ratio of hydrazides to ketocarbonyl groups; (d)Dynamic rheology of HG5 with frequency change

    图  4  (a)水凝胶的溶胶-凝胶转变图;(b)P5和ADH 混合体系的FT-IR谱图;(c)水凝胶温度响应后的体积变化照片;(d)HG5在20 ℃和40 ℃下的SEM照片;(e)水凝胶的体积收缩率

    Figure  4.  (a)Sol-gel transition images of hydrogels;(b)FT-IR spectra of P5 mixed with ADH; (c)Images of hydrogel volume change in response to temperature; (d)SEM images of HG5 at 20 ℃ and 40 ℃; (e)Volume shrinkage rate of hydrogels

    图  5  (a)低于LCST(20 ℃)的自愈合图;(b)高于LCST(40 ℃)的自愈合图;(c)HG5的动态模量变化

    Figure  5.  Self-healing images (a) below LCST(20 ℃) and (b) above LCST(40 ℃); (c)Dynamic modulus changes of HG5

    图  6  (a)HG5的质量随时间变化情况;(b)负载Dox的HG5的药物释放曲线

    Figure  6.  (a)Mass changes of HG5 ; (b)Dox release profiles of Dox-loaded HG5

    表  1  共聚物的组成及参数

    Table  1.   Composition and parameters of polymers

    polymerFeed ratio Final composition1)Mn2)PDI2)
    nNIPAMnAMnDAAMnNIPAMnAMnDAAM
    P190010.089.0011.04.8×1031.63
    P2873.010.086.22.811.05.2×1031.60
    P3855.010.083.25.211.65.0×1031.61
    P48010.010.079.010.610.44.3×1031.58
    P57020.010.069.019.911.14.5×1031.53
    1)Calculated from 1H-NMR spectra; 2)Determined by GPC
    下载: 导出CSV
  • [1] DORING A, BIRNBAUM W, KUCKLING D. Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science [J]. Chemical Society Reviews,2013,42(17):7391-7420. doi: 10.1039/c3cs60031a
    [2] NAAHID S, JAFARI M, LOGAN M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications [J]. Biotechnology Advances,2017,35(5):530-544. doi: 10.1016/j.biotechadv.2017.05.006
    [3] LIANG Y P, ZHAO X, MA P X, et al. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery [J]. Journal of Colloid and Interface Science,2019,536:224-234. doi: 10.1016/j.jcis.2018.10.056
    [4] WEI Z, YANG J H, ZHOU J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications [J]. Chemical Society Reviews,2014,43:8114-8131. doi: 10.1039/C4CS00219A
    [5] 童艳萍, 肖艳. 双重动态化学键交联水凝胶的制备及性能 [J]. 功能高分子学报,2020,33(3):305-312.

    TONG Y P, XIAO Y. Preparation and properties of dual dynamic covalent bond crosslinked hydrogels [J]. Journal of Functional Polymers,2020,33(3):305-312.
    [6] GUO Z R, MA W, GU H J, et al. pH-Switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds [J]. Soft Matter,2017,13(40):7371-7380. doi: 10.1039/C7SM00916J
    [7] 吕展, 郭赞如, 贺站锋, 等. 基于酰腙可逆共价键制备溶胶-凝胶转变的可自愈合水凝胶 [J]. 功能高分子学报,2015,28(4):373-379.

    LYU Z, GUO Z R, HE Z F, et al. Synthesis of sol-gel transition and self-healable hydrogel by acylhydrazone covalent bonds [J]. Journal of Functional Polymers,2015,28(4):373-379.
    [8] WANG X M, BIAN G, ZHANG M, et al. Self-healable hydrogels with cross-linking induced thermo-responsiveness and multi-triggered gel-sol-gel transition [J]. Polymer Chemistry,2017,8(18):2872-2880.
    [9] DENG G, TANG C, LI F, et al. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties [J]. Macromolecules,2010,43(3):1191-1194.
    [10] SMEET N M B, BAKAIC E, HOARE T, et al. Mathew injectable poly (oligoethylene glycol methacrylate)-based hydrogels with tunable phase transition behaviours: physicochemical and biological responses [J]. Acta Biomaterialia,2014,10(10):4143-4155. doi: 10.1016/j.actbio.2014.05.035
    [11] GUO Z R, GU H J, HE Y, et al. Dual dynamic bonds enable biocompatible and tough hydrogels with fast self-recoverable, self-healable and injectable properties [J]. Chemical Engineering Journal,2020:388.
    [12] CHANG R X, WANG X M, QIN J L, et al. Self-activated healable hydrogels with reversible temperature responsiveness [J]. ACS Applied Materials & Interfaces,2016,8(38):25544-25551.
    [13] AN H, XU K Y, CHANG L M, et al. Thermo-responsive self-healable hydrogels with extremely mild base degradability and bio-compatibility [J]. Polymer,2018,147:38-47. doi: 10.1016/j.polymer.2018.05.063
    [14] LAI J T, DEBBY F, SHEA R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents [J]. Macromolecules,2002,35(18):6754-6756. doi: 10.1021/ma020362m
    [15] YAMADA B, ZETTERLUND P B, SATO E. Utility of propenyl groups in free radical polymerization: Effects of steric hindrance on formation and reaction behavior as versatile intermediates [J]. Progress in Polymer Science,2006,21(10):835-877.
    [16] GUO Z R, YIN H Y, FENG Y J, et al. Functionalization of single-walled carbon nanotubes with thermo-responsive poly (N-isopropylacrylamide): effect of the polymer architecture [J]. RSC Advances.,2016,6(44):37953-37964. doi: 10.1039/C6RA00998K
    [17] SUN W H, AN Z H, WU P Y, et al. UCST or LCST? Composition-dependent thermoresponsive behavior of poly (N-acryloylglycinamide-co-diacetone acrylamide) [J]. Macromolecules,2017,50(5):2175-2182. doi: 10.1021/acs.macromol.7b00020
    [18] LIU F, URBAN M W. Recent advances and challenges in designing stimuli-responsive polymers [J]. Progress in Polymer Science,2010,35(1-2):3-23. doi: 10.1016/j.progpolymsci.2009.10.002
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  50
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2021-05-31

目录

    /

    返回文章
    返回