高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丙烯酸酯型季铵盐共聚物薄膜的制备及表征

王友长 梁文城 范瑶 龚晨宇 郎美东

王友长, 梁文城, 范瑶, 龚晨宇, 郎美东. 丙烯酸酯型季铵盐共聚物薄膜的制备及表征[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322001
引用本文: 王友长, 梁文城, 范瑶, 龚晨宇, 郎美东. 丙烯酸酯型季铵盐共聚物薄膜的制备及表征[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210322001
WANG Youchang, LIANG Wencheng, FAN Yao, GONG Chenyu, LANG Meidong. Preparation and Characterization of Acrylic Quaternary Ammonium Salt Copolymer Films[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322001
Citation: WANG Youchang, LIANG Wencheng, FAN Yao, GONG Chenyu, LANG Meidong. Preparation and Characterization of Acrylic Quaternary Ammonium Salt Copolymer Films[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210322001

丙烯酸酯型季铵盐共聚物薄膜的制备及表征

doi: 10.14133/j.cnki.1008-9357.20210322001
基金项目: 国家重点研发计划(2016YFC110703)
详细信息
    作者简介:

    王友长(1996—),男,福建,硕士,研究方向为高分子季铵盐抗菌材料。E-mail:w18101810563@163.com

    通讯作者:

    郎美东,E-mail:mdlang@ecust.edu.cn

  • 中图分类号: TQ325.7

Preparation and Characterization of Acrylic Quaternary Ammonium Salt Copolymer Films

  • 摘要: 通过将丙烯酸丁酯(BA)和甲基丙烯酸二甲氨基乙酯(DMAEMA)自由基共聚得到聚(丙烯酸丁酯-甲基丙烯酸二甲氨基乙酯)P(BA-co-DMAEMA);再分别以溴丁烷(BB)、溴己烷(HB)及溴辛烷(OB)对其季铵化改性,得到侧基带不同长度烷烃链的3组季铵盐共聚物P(BA-co-DMAEMA)-R (R: BB、HB、OB),最后通过流延法将其制成薄膜。利用核磁共振氢谱(1H-NMR)、傅里叶转换红外光谱(FT-IR)、凝胶渗透色谱(GPC)对P(BA-co-DMAEMA)及P(BA-co-DMAEMA)-R的化学结构进行表征。以菌落计数法、抑菌圈对季铵盐薄膜的抗菌性能进行测试。结果表明:当n(BA)/n(DMAEMA) = 23∶77, P(BA-co-DMAEMA)-R的离子化程度分别为58%(BB),45%(HB)和39%(OB)时,季铵盐薄膜对大肠杆菌(E. coli)和金黄色葡萄球菌(S. aureus)的接触杀菌率可达99%。同时,季铵盐薄膜兼具优异的防雾性和透光性,制备流程简单可控。

     

  • 图  1  P(BA-co-DMAEMA)-R的合成路线

    Figure  1.  Synthesis route of P(BA-co-DMAEMA)-R

    图  2  薄膜的实物照片

    Figure  2.  Pictures of films

    图  3  P(BA-co-DMAEMA)的核磁共振氢谱(a)和凝胶渗透色谱(b)

    Figure  3.  1H-NMR spectra (a) and gel permeation chromatography (b) of P(BA-co-DMAEMA)

    图  4  P(BA-co-DMAEMA)-R的核磁共振氢谱(a)和红外光谱(b)

    Figure  4.  1H-NMR spectra (a) and FT-IR spectra (b) of P(BA-co-DMAEMA)-R

    图  5  P(BA-co-DMAEMA)和P(BA-co-DMAEMA)-R薄膜的力学性能

    Figure  5.  Mechanical properties of P(BA-co-DMAEMA) and P(BA-co-DMAEMA)-R films

    图  6  P(BA-co-DMAEMA)和P(BA-co-DMAEMA)-R的接触角(a)和吸湿率(b)

    Figure  6.  Contact angles (a) and water absorption (b) of P(BA-co-DMAEMA) and P(BA-co-DMAEMA)-R

    图  7  P(BA-co-DMAEMA)和P(BA-co-DMAEMA)-R薄膜的透光率

    Figure  7.  Transmittance of P(BA-co-DMAEMA) and P(BA-co-DMAEMA)-R films

    图  8  样品的防雾效果图

    Figure  8.  Antifogging effects of samples

    图  9  薄膜对E. coli(上)和S. aureus(下)的杀菌效果图

    b—P(BA-co-DMAEMA); c—P(BA-co-DMAEMA)—BB; d—P(BA-co-DMAEMA)—HB; e—P(BA-co-DMAEMA)-OB

    Figure  9.  Antibacterial effects to films on E. coli (up) and S. aureus (down)

    图  10  P(BA-co-DMAEMA) (a)和P(BA-co-DMAEMA)-R (b, c, d)对E. coliS. aureus的抑菌圈照片

    a—P(BA-co-DMAEMA); b—P(BA-co-DMAEMA)—BB; c—P(BA-co-DMAEMA)—HB; d—P(BA-co-DMAEMA)-OB

    Figure  10.  Zone of inhibition test result of P(BA-co-DMAEMA) (a) and P(BA-co-DMAEMA)-R (b, c, d) against E. coli and S. aureus

    表  1  菌落计数法测得的相对杀菌率

    Table  1.   Antibacterial rates detected by agar plate colony counting assay

    SamplesAntibacterial rate/%
    E. coliS. aureus
    P(BA-co-DMAEMA)53.348.6
    P(BA-co-DMAEMA)-BB98.695.8
    P(BA-co-DMAEMA)-HB99.599.1
    P(BA-co-DMAEMA)-OB99.999.8
    下载: 导出CSV
  • [1] SILVA C C G, SILVA S P M, RIBEIRO S C. Application of bacteriocins and protective cultures in dairy food preservation [J]. Frontiers in Microbiology,2018,9:594-609. doi: 10.3389/fmicb.2018.00594
    [2] 郜海燕, 陈杭君, 穆宏磊, 等. 生鲜食品包装材料研究进展 [J]. 中国食品学报,2015,15(10):1-10.

    GAO H Y, CHEN H J, MU H L, et al. Research advances of fresh food packaging materials [J]. Journal of Chinese Institute of Food Science and Technology,2015,15(10):1-10.
    [3] CAZON P, VELAZQUEZ G, RAMIREZ J A, et al. Polysaccharide-based films and coatings for food packaging: A review [J]. Food Hydrocolloids,2016,68:136-148.
    [4] OMEROVIC N, DJISALOV M, ZIVOJEVIC K, et al. Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications [J]. Comprehensive Reviews in Food Science and Food Safety,2021:1-27.
    [5] BIANCHI F, FORNARI F, RIBONI N, et al. Development of novel cocrystal-based active food packaging by a quality by design approach [J]. Food Chemistry,2021,347:1-9.
    [6] KRIZSAN A, VOLKE D, WEINERT S, et al. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome [J]. Angewandte Chemie: International Edition in English,2014,53(45):12236-12239. doi: 10.1002/anie.201407145
    [7] MAO C, XIANG Y, LIU X, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures [J]. Acs Nano,2017,11(9):9010-9021. doi: 10.1021/acsnano.7b03513
    [8] ZHANG S L, KAI C C, LIU B F, et al. Facile fabrication of cellulose membrane containing polyiodides and its antibacterial properties [J]. Applied Surface Science,2020,500:46-52.
    [9] WANG G, FENG H, HU L, et al. An antibacterial platform based on capacitive carbon-doped TiO2 nanotubes after direct or alternating currentcharging [J]. Nature Communications,2018,9(1):2055-2062. doi: 10.1038/s41467-018-04317-2
    [10] MESGARI M, AALAMI A H, SAHEBKAR A. Antimicrobial activities of chitosan/titanium dioxide composites as a biological nanolayer for food preservation: A review [J]. International Journal of Biological Macromolecules,2021,176:530-539. doi: 10.1016/j.ijbiomac.2021.02.099
    [11] HOSEINNEJAD M, JAFARI S M, KATOUZIAN I. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications [J]. Critical Reviews in Microbiology,2018,44(2):161-181. doi: 10.1080/1040841X.2017.1332001
    [12] YOUSSEF A M, El-SAYED S M. Bionanocomposites materials for food packaging applications: Concepts and future outlook [J]. Carbohydrate Polymers,2018,193:19-27. doi: 10.1016/j.carbpol.2018.03.088
    [13] HUANG K S, YANG C H, HUANG S L, et al. Recent advances in antimicrobial polymers: A mini-review [J]. International Journal of Molecular Sciences,2016,17(9):1578-1592. doi: 10.3390/ijms17091578
    [14] BELTRAN S A, VALDES G A. New trends in the use of volatile compounds in food packaging [J]. Polymers,2021,13(7):1053-1077. doi: 10.3390/polym13071053
    [15] 张翔, 赵伟锋, 赵长生. 功能性聚醚砜膜的研究进展 [J]. 功能高分子学报,2021,34(2):114-125.

    ZHANG X, ZHAO W F, ZHAO C S. Progress in functionalized polyethersulfone membranes [J]. Journal of Functional Polymers,2021,34(2):114-125.
    [16] 雷雨, 屈雪. 电泳沉积技术制备海藻酸钙-纳米铜复合抗菌膜 [J]. 功能高分子学报,2020,33(3):553-560.

    LEI Y, QU X. Calcium alginate-copper nanoparticles composite bactericidal film prepared by electrophoretic deposition technique[J]. Journal of Functional Polymers, 2020, 33(3): 297-304. LIU S, SUN Y L, CHEN C L, et al Calcium alginate-copper nanoparticles composite bactericidal film prepared by electrophoretic deposition technique [J]. Journal of Functional Polymers,2020,33(3):553-560.
    [17] ZHAO J, MA L, MILLIANS W, et al. Dual-functional antifogging/antimicrobial polymer coating [J]. ACS Applied Materials & Interfaces,2016,8(13):8737-8742.
    [18] LI, Z, WANG S, YANG X, et al. Antimicrobial and antifouling coating constructed using rosin acid-based quaternary ammonium salt and N-vinylpyrrolidone via RAFT polymerization [J]. Applied Surface Science,2020,530:147193. doi: 10.1016/j.apsusc.2020.147193
    [19] JIAO Y, NIU L N, MA S, et al. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance [J]. Progress in Polymer Science,2017,71:53-90. doi: 10.1016/j.progpolymsci.2017.03.001
    [20] TILLER J C, LEE S B, LEWIS K, et al. Polymer surfaces derivatized with poly(vinyl-N-hexylpyridinium) kill airborne and waterborne bacteria [J]. Biotechnology & Bioengineering,2010,79(4):465-471.
    [21] KHAN M, WU Z, MAO S, et al. Controlled grafted poly(quaternized-4-vinylpyridine-co-acrylic acid) brushes attract bacteria for effective antimicrobial surfaces [J]. Journal of Materials Chemistry B,2018,6(22):3782-3791. doi: 10.1039/C8TB00702K
    [22] CARMONA-RIBEIRO A M, CARRASCO L D D. Cationic antimicrobial polymers and their assemblies [J]. International Journal of Molecular Sciences,2013,14(5):9906-9946. doi: 10.3390/ijms14059906
    [23] URBAN M W, DAVYDOVICH D, YANG Y, et al. Key-and-lock commodity self-healing copolymers [J]. Science,2018,362(6411):220-227. doi: 10.1126/science.aat2975
    [24] BAI S, LI X, ZHANG R, et al. Enhancing antifogging/frost-resisting performances of amphiphilic coatings via cationic, zwitterionic or anionic polyelectrolytes [J]. Chemical Engineering Journal,2019,357:667-677. doi: 10.1016/j.cej.2018.09.177
    [25] YU H, LIU L, LI X, et al. Fabrication of polylysine based antibacterial coating for catheters by facile electrostatic interaction [J]. Chemical Engineering Journal,2019,360:1030-1041. doi: 10.1016/j.cej.2018.10.160
    [26] ZHAO J, MILLIANS W, TANG S, et al. Self-stratified antimicrobial acrylic coatings via one-step UV curing [J]. Acs Applied Materials & Interfaces,2015,7(33):18467-18472.
    [27] 朱嘉莹, 李婷, 丁重阳, 等. PDA-Cu NPs树莓状纳米粒子的制备及其抗菌性能 [J]. 功能高分子学报,2020,33(5):500-506.

    ZHU J Y, LI T, DING Z Y, et al. Preparation of raspberry-like PDA-Cu NPs nanoparticles with antibacterial properties [J]. Journal of Functional Polymers,2020,33(5):500-506.
    [28] LI M, LIU X, LIU N, et al. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,554:122-128.
    [29] GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances [J]. Applied Catalysis B: Environmental,2018,225:51-75. doi: 10.1016/j.apcatb.2017.11.018
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  31
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2021-05-18

目录

    /

    返回文章
    返回