高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁酸辅助表面快速沉积聚赖氨酸涂层及其抗菌性能

郭伶俐 任旭 何晓东 张凯 徐立群

郭伶俐, 任旭, 何晓东, 张凯, 徐立群. 单宁酸辅助表面快速沉积聚赖氨酸涂层及其抗菌性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210321001
引用本文: 郭伶俐, 任旭, 何晓东, 张凯, 徐立群. 单宁酸辅助表面快速沉积聚赖氨酸涂层及其抗菌性能[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210321001
GUO Lingli, REN Xu, HE Xiaodong, ZHANG Kai, XU Liqun. Tannic Acid-Assisted Rapid Deposition of Epsilon-Poly-L-Lysine Coating for Antibacterial Application[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210321001
Citation: GUO Lingli, REN Xu, HE Xiaodong, ZHANG Kai, XU Liqun. Tannic Acid-Assisted Rapid Deposition of Epsilon-Poly-L-Lysine Coating for Antibacterial Application[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210321001

单宁酸辅助表面快速沉积聚赖氨酸涂层及其抗菌性能

doi: 10.14133/j.cnki.1008-9357.20210321001
基金项目: 国家自然科学基金(52073234);重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0363);重庆市高校创新研究群体项目(CXQT20005)
详细信息
    作者简介:

    郭伶俐(1995—),女,硕士生,主要研究方向为生物医用高分子材料。E-mail:2568349559@qq.com

    通讯作者:

    徐立群,E-mail:xulq@swu.edu.cn

  • 中图分类号: R318.08

Tannic Acid-Assisted Rapid Deposition of Epsilon-Poly-L-Lysine Coating for Antibacterial Application

  • 摘要: 利用单宁酸(TA)的表面沉积功能,结合TA与ε-聚赖氨酸(Ply)的多重相互作用,在聚二甲基硅氧烷(PDMS)表面制备了TA-Ply功能化涂层,得到TA-Ply修饰的PDMS(PDMS-TA-Ply)。通过X射线光电子能谱仪和接触角测量仪表征了材料的表面化学元素和亲疏水性能;通过蛋白质吸附、细菌黏附、生物被膜形成、细胞毒性等实验评价了PDMS-TA-Ply表面的抗菌/抗污性能和生物相容性。结果表明:PDMS-TA-Ply表面具有良好的抗菌/抗污性能和生物相容性,且表面沉积的Ply量越大,其抗菌/抗污性能越好。

     

  • 图  1  TA与Ply在PDMS表面快速沉积示意图

    Figure  1.  Schematic illustration of surface deposition of TA and Ply on PDMS surface

    图  2  (a)TA溶液与Ply溶液混后前后的图片;空白PDMS和PDMS-TA-Ply表面的(b)XPS谱图和(c)静态水接触角

    Figure  2.  (a)Photographs of TA and Ply solutions before and after mixing;(b)XPS patterns and(c)the static water contact angles of the PDMS and PDMS-TA-Ply surfaces(*** represents p<0.001, vs PDMS)

    图  3  (a)BSA和(b)FBG在裸金芯片和Au-TA-Ply表面的SPR角偏移曲线以及(c)吸附量

    Figure  3.  SPR sensorgrams of bare Au and Au-TA-Ply surfaces upon exposure to(a)BSA and (b)FBG, (c)adsorbed amounts(* represents p<0.05, ** represents p<0.01, and *** represents p<0.001, vs bare Au)

    图  4  空白PDMS和PDMS-TA-Ply表面与(a,b,c)E. coli和(d,e,f)S. aureus接触4 h后的SEM照片

    Figure  4.  SEM images of adhered(a, b, c)E. coli and(d, e, f)S. aureus on the pristine PDMS and PDMS-TA-Ply surfaces after 4 h incubation

    图  5  空白和改性PDMS表面(a)黏附的E. coliS. aureus在TSB琼脂板形成的菌落图和(b)黏附的活细菌数量,以及对(c)E. coli和(d)S. aureus的接触杀菌实验(1~3分别代表空白PDMS、PDMS-TA-Ply0.5和PDMS-TA-Ply2)

    Figure  5.  (a)The formed E. coli and S. aureus colonies and (b)the number of live bacteria on the pristine and modified PDMS surfaces, and the contact killing performance of the pristine and modified PDMS substrates against(c)E. coli and(d)S. aureus(1, 2, and 3 represent pristine PDMS, PDMS-TA-Ply0.5 and PDMS-TA-Ply2 surfaces)

    图  6  空白PDMS和PDMS-TA-Ply表面形成的E. coliS. aureus生物被膜的CLSM图像

    Figure  6.  CLSM images of E. coli and S. aureus biofilms formed on the pristine PDMS and PDMS-TA-Ply surfaces

    图  7  空白PDMS和PDMS-TA-Ply表面形成的(a,b,c)E. coli和(d,e,f)S. aureus生物被膜的SEM照片

    Figure  7.  SEM images of (a, b, c)E. coli and (d, e, f)S. aureus biofilms on the pristine PDMS and PDMS-TA-Ply surfaces

    图  8  L929小鼠成纤维细胞与空白PDMS和PDMS-TA-Ply表面预处理的DMEM培养基共孵育(a)24 h和(b)48 h后的存活率

    Figure  8.  Relative cell viabilities of L929 mouse fibroblasts culturing in DMEM pretreated with the pristine PDMS and PDMS-TA-Ply surfaces for (a)24 h and (b)48 h(* represents p<0.05, vs PDMS in each group)

  • [1] HAWSER S P, DOUGLAS L J. Biofilm formation by candida species on the surface of catheter materials in-vitro [J]. Infection and Immunity,1994,62(3):915-921. doi: 10.1128/IAI.62.3.915-921.1994
    [2] ZDRAHALA R J, ZDRAHALA I J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future [J]. Journal of Biomaterials Applications,1999,14(1):67-90. doi: 10.1177/088532829901400104
    [3] 柏至伟, 张治斌, 张雅娟, 等. 基于配位键交联的自修复弹性体的合成及表征 [J]. 功能高分子学报,2020,33(2):180-186.

    BAI Z W, ZHANG Z B, Zhang Y J, et al. Synthesis and characterization of self-healing elastomers based on coordination bonds [J]. Journal of Functional Polymers,2020,33(2):180-186.
    [4] 朱凯, 朱保宁, 李莉莉. 共聚物P(NIPAM-co-AAEA)的合成及其抗菌凝胶涂层的性能 [J]. 功能高分子学报,2019,32(5):640-646.

    ZHU K, ZHU B N, LI L L. Synthesis of copolymer P(NIPAM-co-AAEA) and properties of the antibacterial hydrogel coating [J]. Journal of Functional Polymers,2019,32(5):640-646.
    [5] AJDNIK U, FINSGAR M, ZEMLJIC L F. Characterization of chitosan-lysine surfactant bioactive coating on silicone substrate [J]. Carbohydrate Polymers,2020,232:115817. doi: 10.1016/j.carbpol.2019.115817
    [6] SCHACHTER B. Slimy business[mdash]the biotechnology of biofilms [J]. Nature Biotechnology,2003,21(4):361-365. doi: 10.1038/nbt0403-361
    [7] 于谦, 陈红. 具有“杀菌-释菌”功能转换的智能抗菌表面 [J]. 高分子学报,2020,51(4):319-325. doi: 10.11777/j.issn1000-3304.2020.20031

    YU Q, CHEN H. Smart antibacterial surfaces with switchable function to kill and release bacteria [J]. Acta Polymerica Sinica,2020,51(4):319-325. doi: 10.11777/j.issn1000-3304.2020.20031
    [8] LIM K, CHUA R R Y, HO B, et al. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties [J]. Acta Biomaterialia,2015,15:127-138. doi: 10.1016/j.actbio.2014.12.015
    [9] VATERRODT A, THALLINGER B, DAUMANN K, et al. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly [J]. Langmuir,2016,32(5):1347-1359. doi: 10.1021/acs.langmuir.5b04303
    [10] TANG Y, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property [J]. Chemical Engineering Journal,2020:398 125575.
    [11] 李晓玥, 刘潭, 杨博. ε-聚-L-赖氨酸及其抑菌机理研究进展 [J]. 作物研究,2019,33(6):608-614.

    LI X Y, LIU T, YANG B. Advance in the research on ε-poly-L-lysine and its antimicrobial mechanisms [J]. Crop Research,2019,33(6):608-614.
    [12] 冯艳芸, 郭海娟, 李海亮, 等. 生物防腐剂聚赖氨酸研究进展 [J]. 农产品加工(上半月),2019(4):57-62.

    FENG Y Y, GUO H J, LI H L, et al. Research progress of ε-polylysine as biological preservative [J]. Academic Periodical of Farm Products Processing,2019(4):57-62.
    [13] 刘汉锁, 龙沈飞, 尚庆辉, 等. 水解单宁酸的作用机制及其在畜禽生产中的应用进展 [J]. 动物营养学报,2019,31(9):3991-3999. doi: 10.3969/j.issn.1006-267X.2019.09.010

    LIU H S, LONG S F, SHANG Q H, et al. Mechanism of action hydrolyzed tannic acid and its application in livestock and poultry production [J]. Chinese Journal of Animal Nutrition,2019,31(9):3991-3999. doi: 10.3969/j.issn.1006-267X.2019.09.010
    [14] SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine [J]. Angewandte Chemie International Edition,2013,52(41):10766-10770. doi: 10.1002/anie.201304922
    [15] XU L Q, NEOH K G, KANG E T. Natural polyphenols as versatile platforms for material engineering and surface functionalization [J]. Progress in Polymer Science,2018,87:165-196. doi: 10.1016/j.progpolymsci.2018.08.005
    [16] GUO L L, CHENG Y F, REN X, et al. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface [J]. Colloids and Surfaces B: Biointerfaces,2021,200:111592. doi: 10.1016/j.colsurfb.2021.111592
  • 加载中
图(8)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  3
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 网络出版日期:  2021-06-01

目录

    /

    返回文章
    返回