Tannic Acid-Assisted Rapid Deposition of ε-Poly-L-Lysine Coating for Antibacterial Application
-
摘要: 利用单宁酸(TA)的表面沉积功能,结合TA与ε-聚赖氨酸(Ply)的多重相互作用,在聚二甲基硅氧烷(PDMS)表面制备了TA-Ply功能化涂层,得到TA-Ply修饰的PDMS(PDMS-TA-Ply)。通过X射线光电子能谱仪和接触角测量仪表征了材料的表面化学元素和亲疏水性能;通过蛋白质吸附、细菌黏附、生物被膜形成、细胞毒性等实验评价了PDMS-TA-Ply表面的抗菌/抗污性能和生物相容性。结果表明:PDMS-TA-Ply表面具有良好的抗菌/抗污性能和生物相容性,且表面沉积的Ply量越大,其抗菌/抗污性能越好。Abstract: Polydimethylsiloxane (PDMS) has good thermal stability, biocompatibility and corrosion resistance, and it has been widely used in the field of biomedical materials, i.e., medical catheters. However, the surface of PDMS is highly hydrophobic and susceptible to contamination by bacteria and plasma proteins. In this study, PDMS-TA-Ply surfaces were prepared by the rapid and successive deposition of tannic acid (TA) and ε-poly-L-lysine (Ply) on the PDMS surface via the solution immersion method. The surface chemical elements and hydrophilic properties of PDMS-TA-Ply surfaces were evaluated by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The anti-protein adsorption, antibacterial adhesion, anti-biofilm formation and cytotoxicity of PDMS-TA-Ply surfaces were evaluated. The results showed that PDMS-TA-Ply surfaces exhibited good antibacterial properties and low cytotoxicity toward L929 mouse fibroblasts. In addition, the PDMS-TA-Ply surface with higher content of Ply showed better antifouling/antibacterial performance.
-
Key words:
- ε-poly-L-lysine /
- tannic acid /
- antibacterial /
- surface modification /
- polydimethylsiloxane
-
图 5 空白和改性PDMS表面(a)黏附的E. coli和S. aureus在TSB琼脂板形成的菌落图和(b)黏附的活细菌数量,以及对(c)E. coli和(d)S. aureus的接触杀菌实验(1~3分别代表空白PDMS、PDMS-TA-Ply0.5和PDMS-TA-Ply2)
Figure 5. (a)The formed E. coli and S. aureus colonies and (b)the number of live bacteria on the pristine and modified PDMS surfaces, and the contact killing performance of the pristine and modified PDMS substrates against (c)E. coli and (d)S. aureus(1, 2 and 3 represent pristine PDMS, PDMS-TA-Ply0.5 and PDMS-TA-Ply2)
-
[1] HAWSER S P, DOUGLAS L J. Biofilm formation by candida species on the surface of catheter materials in-vitro [J]. Infection and Immunity,1994,62(3):915-921. doi: 10.1128/IAI.62.3.915-921.1994 [2] ZDRAHALA R J, ZDRAHALA I J. Biomedical applications of polyurethanes: A review of past promises, present realities, and a vibrant future [J]. Journal of Biomaterials Applications,1999,14(1):67-90. doi: 10.1177/088532829901400104 [3] 柏至伟, 张治斌, 张雅娟, 等. 基于配位键交联的自修复弹性体的合成及表征 [J]. 功能高分子学报,2020,33(2):180-186.BAI Z W, ZHANG Z B, ZHANG Y J, et al. Synthesis and characterization of self-healing elastomers based on coordination bonds [J]. Journal of Functional Polymers,2020,33(2):180-186. [4] 朱凯, 朱保宁, 李莉莉. 共聚物P(NIPAM-co-AAEA)的合成及其抗菌凝胶涂层的性能 [J]. 功能高分子学报,2019,32(5):640-646.ZHU K, ZHU B N, LI L L. Synthesis of copolymer P(NIPAM-co-AAEA) and properties of the antibacterial hydrogel coating [J]. Journal of Functional Polymers,2019,32(5):640-646. [5] AJDNIK U, FINSGAR M, ZEMLJIC L F. Characterization of chitosan-lysine surfactant bioactive coating on silicone substrate [J]. Carbohydrate Polymers,2020,232:115817. doi: 10.1016/j.carbpol.2019.115817 [6] SCHACHTER B. Slimy business—the biotechnology of biofilms [J]. Nature Biotechnology,2003,21(4):361-365. doi: 10.1038/nbt0403-361 [7] 于谦, 陈红. 具有“杀菌-释菌”功能转换的智能抗菌表面 [J]. 高分子学报,2020,51(4):319-325. doi: 10.11777/j.issn1000-3304.2020.20031YU Q, CHEN H. Smart antibacterial surfaces with switchable function to kill and release bacteria [J]. Acta Polymerica Sinica,2020,51(4):319-325. doi: 10.11777/j.issn1000-3304.2020.20031 [8] LIM K, CHUA R R Y, HO B, et al. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties [J]. Acta Biomaterialia,2015,15:127-138. doi: 10.1016/j.actbio.2014.12.015 [9] VATERRODT A, THALLINGER B, DAUMANN K, et al. Antifouling and antibacterial multifunctional polyzwitterion/enzyme coating on silicone catheter material prepared by electrostatic layer-by-layer assembly [J]. Langmuir,2016,32(5):1347-1359. doi: 10.1021/acs.langmuir.5b04303 [10] TANG Y, SUN H, QIN Z, et al. Bioinspired photocatalytic ZnO/Au nanopillar-modified surface for enhanced antibacterial and antiadhesive property [J]. Chemical Engineering Journal,2020,398:125575. [11] 李晓玥, 刘潭, 杨博. ε-聚-L-赖氨酸及其抑菌机理研究进展 [J]. 作物研究,2019,33(6):608-614.LI X Y, LIU T, YANG B. Advance in the research on ε-poly-L-lysine and its antimicrobial mechanisms [J]. Crop Research,2019,33(6):608-614. [12] 冯艳芸, 郭海娟, 李海亮, 等. 生物防腐剂聚赖氨酸研究进展 [J]. 农产品加工,2019(4):57-62.FENG Y Y, GUO H J, LI H L, et al. Research progress of ε-polylysine as biological preservative [J]. Academic Periodical of Farm Products Processing,2019(4):57-62. [13] 刘汉锁, 龙沈飞, 尚庆辉, 等. 水解单宁酸的作用机制及其在畜禽生产中的应用进展 [J]. 动物营养学报,2019,31(9):3991-3999. doi: 10.3969/j.issn.1006-267X.2019.09.010LIU H S, LONG S F, SHANG Q H, et al. Mechanism of action hydrolyzed tannic acid and its application in livestock and poultry production [J]. Chinese Journal of Animal Nutrition,2019,31(9):3991-3999. doi: 10.3969/j.issn.1006-267X.2019.09.010 [14] SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine [J]. Angewandte Chemie International Edition,2013,52(41):10766-10770. doi: 10.1002/anie.201304922 [15] XU L Q, NEOH K G, KANG E T. Natural polyphenols as versatile platforms for material engineering and surface functionalization [J]. Progress in Polymer Science,2018,87:165-196. doi: 10.1016/j.progpolymsci.2018.08.005 [16] GUO L L, CHENG Y F, REN X, et al. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on Titanium surface [J]. Colloids and Surfaces B: Biointerfaces,2021,200:111592. doi: 10.1016/j.colsurfb.2021.111592 -