高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白蛋白/透明质酸纳米颗粒制备及递送顺铂效果

王太兵 李颖 贾卓翰 郭敏 胥伟军 钱军民 锁爱莉

王太兵, 李颖, 贾卓翰, 郭敏, 胥伟军, 钱军民, 锁爱莉. 白蛋白/透明质酸纳米颗粒制备及递送顺铂效果[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210318001
引用本文: 王太兵, 李颖, 贾卓翰, 郭敏, 胥伟军, 钱军民, 锁爱莉. 白蛋白/透明质酸纳米颗粒制备及递送顺铂效果[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210318001
WANG Taibing, LI Ying, JIA Zhuohan, GUO Min, XU Weijun, QIAN Junmin, SUO Aili. Preparation of Albumin/Hyaluronic Acid Composite Nanoparticles for Cisplatin Delivery[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210318001
Citation: WANG Taibing, LI Ying, JIA Zhuohan, GUO Min, XU Weijun, QIAN Junmin, SUO Aili. Preparation of Albumin/Hyaluronic Acid Composite Nanoparticles for Cisplatin Delivery[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210318001

白蛋白/透明质酸纳米颗粒制备及递送顺铂效果

doi: 10.14133/j.cnki.1008-9357.20210318001
基金项目: 国家自然科学基金(82073309),陕西省重点研发计划(2020SF-033和2020GY-290),博士后基金(2019TQ0256)
详细信息
    作者简介:

    王太兵(1995—),男,硕士研究生,主要从事医用高分子纳米材料研究。E-mail:wangbing1995@stu.xjtu.edu.cn

    通讯作者:

    钱军民,E-mail:jmqian@mail.xjtu.edu.cn

    锁爱莉,E-mail:ailisuo@mail.xjtu.edu.cn

  • 中图分类号: TB34

Preparation of Albumin/Hyaluronic Acid Composite Nanoparticles for Cisplatin Delivery

  • 摘要: 利用白蛋白模板法,以白蛋白、酰肼化透明质酸和醛基化透明质酸为原料,制备出了白蛋白/透明质酸(B-HA)纳米载体,其可通过配位作用装载顺铂(Cis)得到B-HA/Cis纳米药物。利用FT-IR光谱、1H-NMR谱、透射电子显微镜和电感耦合等离子体-质谱(ICP-MS)等手段表征了B-HA纳米载体的化学结构和B-HA/Cis纳米药物的理化性质。结果表明:该纳米载体装载顺铂后为近球形形貌,平均粒径约为150 nm,顺铂载药量可达10.8%;纳米药物具有还原性/酸性双重响应性药物释放行为。体外细胞实验表明,该纳米载体的细胞毒性可忽略,纳米药物对HepG2肝癌细胞有靶向作用,杀伤效果与游离态顺铂相当,杀伤癌细胞的机制是诱导凋亡。白蛋白/透明质酸纳米颗粒是综合性能优异的顺铂靶向递送载体,有望在体内呈现提高疗效、降低毒副作用的效果。

     

  • 图  1  在D2O中测得的HA(a)和AHA(b)的1H-NMR谱图

    Figure  1.  1H-NMR spectra of HA (a) and AHA (b) in D2O

    图  2  BSA、B-HA和HHA的FT-IR谱图

    Figure  2.  FT-IR spectra of BSA, B-HA and HHA

    图  3  纳米药物的平均粒径和Zeta电位(a)以及TEM照片(b)

    Figure  3.  Average size and zeta potential(a) and TEM image(b) of nanodrug

    图  4  纳米药物在肿瘤细胞模拟环境中释放顺铂的行为

    Figure  4.  Release behaviors of cisplatin from nanodrug in simulated tumor cellular environments

    图  5  FITC标记的B-HA纳米载体处理HepG2细胞的CLSM照片

    Figure  5.  CLSM images of HepG2 cells incubated with FITC-labeled B-HA nanocarriers

    图  6  B-HA纳米载体的体外细胞毒性(a)、纳米药物的IC50值(b)及纳米药物处理HepG2细胞的杀伤效果(c)

    Figure  6.  In vitro cytotoxicity of B-HA nanocarrier (a), IC50 of nanodrug (b) and killing effect of nanodrug on HepG2 cells (c)

    图  7  PBS(a)、纳米载体(b)、透明质酸+纳米药物(c)、纳米药物(d)和游离顺铂(e)处理HepG2细胞48 h后的凋亡/坏死情况

    Figure  7.  Apoptosis/necrosis of HepG2 cells treated with PBS (a), nanocarrier (b), HA + nanodrug (c), nanodrug (d) and free cisplatin (e) for 48 h

  • [1] CHEN W H, LUO G F, ZHANG X Z, et al. Recent advances in subcellular targeted cancer therapy based on functional materials [J]. Advanced Materials,2019,31(3):1802725-1802725. doi: 10.1002/adma.201802725
    [2] 姜中雨, 冯祥汝, 许维国, 等. 磷酸钙固化聚(L-谷氨酸)-顺铂/三氧化二砷纳米团簇协同治疗腹腔转移卵巢癌 [J]. 高分子学报,2020(8):901-910.

    JIANG Z Y, FENG X R, XU W G, et al. Calcium phosphate-cured nanocluster of poly(L-glutamic acid)-cisplatin and arsenic trioxide for synergistic [J]. Acta Polymeric Sinica,2020(8):901-910.
    [3] 李晨, 祁迎秋, 王亚洲, 等. 基于靶向调控肿瘤微环境的多肽纳米药物系统研究进展 [J]. 功能高分子学报,2019,32(5):567-581.

    LI C, QI Y Q, WANG Y Z, et al. Application of peptide-based nanoformulations for targeting and regulating tumor microenvironment [J]. Journal of Functional Polymers,2019,32(5):567-581.
    [4] ZHENG P, DING B B, JIANG Z Y, et al. Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death [J]. Nano Letters,2021,21(5):2088-2093. doi: 10.1021/acs.nanolett.0c04778
    [5] XU Y, HAN X X, LI Y Y, et al. Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity [J]. ACS Nano,2019,13(11):13445-13455. doi: 10.1021/acsnano.9b07032
    [6] CAON I, BARTOLINI B, PARNIGONI A, et al. Revisiting the hallmarks of cancer: The role of hyaluronan [J]. Seminars in Cancer Biology,2020,62:9-19. doi: 10.1016/j.semcancer.2019.07.007
    [7] 朱益锐, 蔡志祥, 郭亚龙, 等. 基于透明质酸构建的功能材料及其在生物医药领域中的应用 [J]. 功能高分子学报,2021,34(1):26-48.

    ZHU Y R, CAI Z X, GUO Y L, et al. Hyaluronan-based functional materials for their biomedical applications [J]. Journal of Functional Polymers,2021,34(1):26-48.
    [8] ZHAO J, WANG H M, HSIAO C H, et al. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy [J]. Biomaterials Guildford,2018,159:215-228. doi: 10.1016/j.biomaterials.2018.01.014
    [9] ZHANG Y, WANG F, LI M Q, et al. Self‐stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma [J]. Advanced Science,2018,5(5):1700821. doi: 10.1002/advs.201700821
    [10] 马鸿云, 庄新明, 许维国, 等. 载阿霉素和顺铂的透明质酸纳米粒子对小鼠移植性乳腺癌的抑制作用 [J]. 吉林大学学报(医学版),2018,44(2):243-248.

    MA H Y, ZHUANG X M, XU W G. et al. Inhibitory effects of hyaluronic acid nanoparticles loading doxorubicin and cisplatin on allograft breast cancer in mice [J]. Journal of Jilin University (Medicine Edition),2018,44(2):243-248.
    [11] QIAN Y X, WANG Y H, JIA F, et al. Tumor-microenvironment controlled nanomicelles with AIE property for boosting cancer therapy and apoptosis monitoring [J]. Biomaterials,2019,188:96-106. doi: 10.1016/j.biomaterials.2018.10.003
    [12] XU M H, QIAN J M, LIU T, et al. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery [J]. Materials Science & Engineering C,2015,50:341-347.
    [13] XU W J, WANG J L, QIAN J M, et al. NIR/pH dual-responsive polysaccharide-encapsulated gold nanorods for enhanced chemo-photothermal therapy of breast cancer [J]. Materials Science & Engineering C,2019,103:109854.
    [14] WANG Y P, YANG M, QIAN J M, et al. Sequentially self-assembled polysaccharide-based nanocomplexes for combined chemotherapy and photodynamic therapy of breast cancer [J]. Carbohydrate Polymers,2019,203:203-213. doi: 10.1016/j.carbpol.2018.09.035
    [15] ZHAO J Y, WU H, ZHAO J L, et al. 2D LDH-MoS2 clay nanosheets: Synthesis, catalase-mimic capacity, and imaging-guided tumor photo-therapy [J]. Journal of Nanobiotechnology,2021,19:36. doi: 10.1186/s12951-020-00763-7
    [16] ZHANG J, MU Y L, MA Z Y, et al. Tumor-triggered transformation of chimeric peptide for dual-stage-amplified magnetic resonance imaging and precise photodynamic therapy [J]. Biomaterials,2018,182:269-278. doi: 10.1016/j.biomaterials.2018.08.026
    [17] TORRESAN V, FORRER D, GUADAGNINI A, et al. 4D multimodal nanomedicines made of nonequilibrium Au-Fe alloy nanoparticles[J]. ACS Nano, 14(10): 12840-12853.
    [18] SHIN H, NA K. In situ vaccination with biocompatibility controllable immuno-sensitizer inducing antitumor immunity [J]. Biomaterials,2019,197:32-40. doi: 10.1016/j.biomaterials.2019.01.015
    [19] YANG T, YU S Y, LIU L, et al. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy [J]. Biomaterials Science,2020,8(20):5698-5714. doi: 10.1039/D0BM01191F
    [20] MENG X, DENG J, LIU F, et al. Triggered all-active metal organic framework: Ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy [J]. Nano Letters,2019,19(11):7866-7876. doi: 10.1021/acs.nanolett.9b02904
    [21] DAI Y L, CHENG S Y, WANG Z L, et al. Hypochlorous acid promoted platinum drug chemotherapy by myeloperoxidase-encapsulated therapeutic metal phenolic nanoparticles [J]. ACS Nano,2018,12(1):455-463. doi: 10.1021/acsnano.7b06852
    [22] ZHENG X, ZHANG F, ZHAO Y, et al. Self-assembled dual fluorescence nanoparticles for CD44-targeted delivery of anti-miR-27a in liver cancer theranostics [J]. Theranostics,2018,8(14):3808-3823. doi: 10.7150/thno.25255
  • 加载中
图(7)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  156
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 网络出版日期:  2021-04-21

目录

    /

    返回文章
    返回