高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

糖肽高分子材料及生物医学应用

张婧楷 刘潇璇 李莉莉

张婧楷, 刘潇璇, 李莉莉. 糖肽高分子材料及生物医学应用[J]. 功能高分子学报, 2021, 34(5): 401-417. doi: 10.14133/j.cnki.1008-9357.20210309001
引用本文: 张婧楷, 刘潇璇, 李莉莉. 糖肽高分子材料及生物医学应用[J]. 功能高分子学报, 2021, 34(5): 401-417. doi: 10.14133/j.cnki.1008-9357.20210309001
ZHANG Jingkai, LIU Xiaoxuan, LI Lili. Glycopeptide-Based Polymers and Their Biomedical Applications[J]. Journal of Functional Polymers, 2021, 34(5): 401-417. doi: 10.14133/j.cnki.1008-9357.20210309001
Citation: ZHANG Jingkai, LIU Xiaoxuan, LI Lili. Glycopeptide-Based Polymers and Their Biomedical Applications[J]. Journal of Functional Polymers, 2021, 34(5): 401-417. doi: 10.14133/j.cnki.1008-9357.20210309001

糖肽高分子材料及生物医学应用

doi: 10.14133/j.cnki.1008-9357.20210309001
基金项目: 国家自然科学基金(51873045);国家重点研发计划项目(2018YFE0205400)
详细信息
    作者简介:

    张婧楷(1996—),女,山西太原人,硕士生,主要研究方向为自组装糖肽及树形分子的设计、合成及生物应用。E-mail:zhangjingkai_cpu@163.com

    刘潇璇,中国药科大学药物科学研究院高端药物制剂和材料研究中心教授,国家海外高层次人才计划青年项目入选者,江苏省特聘教授。研究工作主要聚焦于开发以树形分子为主体的新型自组装纳米材料,并以此构筑安全高效的核酸药物载体平台,提高核酸药物的成药性,用于治疗癌症、病毒感染等难治性疾病。近年来,发表论著共30余篇,其中第一作者(或共同第一作者)和共同通信作者15篇,部分研究成果在J Am Chem Soc, Angew Chem In Ed, Adv Funct Mater, Small, J Control Release等学术刊物上作为卷首或封面故事报道,并被Nature Chemistry作为亮点报道。主持和参与多项省部级科研和人才项目以及国际合作项目。担任中国药学会药剂专业委员会青年委员会委员、中国生物物理学会专业委员会青年委员会委员、《中国药科大学学报》、《亚洲药物制剂科学》等期刊青年编委

    李莉莉,博士,研究员,主要研究方向为多肽聚合物纳米材料的“体内自组装”技术及重大疾病诊疗应用,围绕体内和体外的超分子可控组装和性能以及在肿瘤或感染方面的成像和治疗展开特色研究。近年来,在Nat Commun,Nat Biomed Eng,Adv Mater,ACS nano,Nano Lett等期刊共发表文章30余篇,文章他引次数超过500次,相关重要成果多次被Materials Views China等媒体和学术网站报道。申请国内发明专利4件、国际专利1件,授权1件。以负责人承担科研项目7项,包括国际合作重点研发计划子课题、自然科学基金面上、青年科学基金项目等。2017年成为中国科学院青年促进会成员,并获得2017中科院青促会“学科交叉与创新”奖

    通讯作者:

    刘潇璇,E-mail:xiaoxuanliucpu@163.com

    李莉莉,E-mail:lill@nanoctr.cn

  • 中图分类号: O636

Glycopeptide-Based Polymers and Their Biomedical Applications

  • 摘要: 糖肽高分子材料是一类由多肽和糖类化合物构成的高分子材料。糖肽高分子材料具有与天然糖肽/糖蛋白类似的化学组成,能够在一定程度上模拟天然糖肽/糖蛋白的结构和功能。本文总结了糖肽高分子材料的合成方法、材料设计及其在生物医学领域的应用,重点综述了糖肽高分子材料在糖肽树形分子、自组装糖肽和糖肽聚合物方面的材料设计,以及糖肽高分子材料在抗菌、抗肿瘤疫苗、仿生支架、组织及软骨修复方面的应用。最后,对糖肽高分子材料的发展与前景进行了展望。

     

  • 图  1  糖肽高分子材料及其生物医学应用

    Figure  1.  Schematic illustration of development of glycopeptide-based polymers and its applications

    图  2  NCL机理的示意图

    Figure  2.  Mechanism diagram of NCL

    图  3  糖肽树形分子的结构分类

    Figure  3.  Structural classification of glycopeptide dendrimers

    图  4  多价糖肽树形分子的二维示意图[56]

    Figure  4.  Two-dimensional sketch of the multivalent glycoconjugated peptide dendrimers[56]

    图  5  自组装糖肽材料的设计

    Figure  5.  Design of self-assembled glycopeptide materials

    图  6  糖基转移酶诱导含蛋白多糖残基的糖肽自组装形态转变[62]

    Figure  6.  Glycosyltransferase-induced morphology transition of glycopeptide self-assemblies with proteoglycan residues[62]

    图  7  (a)糖肽类凝胶的分子结构;(b)超分子水凝胶的自组装过程[64]

    Figure  7.  (a) Molecular structures of glycopeptide gelators; (b) Illustration of the self-assembling process of glycopeptides for the generation of supramolecular hydrogel[64]

    图  8  糖肽聚合物示例

    Figure  8.  Examples of glycopeptide polymer

    图  9  (a)多甘露糖树形分子和寡聚苯丙氨酸悬垂物交替排列,形成两亲性糖聚肽刷;(b)从胶束到纳米线的分层自组装[70]

    Figure  9.  (a) Hierarchical self-assembly of alternating amphiphilic glycopolypeptide brushes with pendants of high-mannose glycodendron and oligophenylalanine; (b)Hierarchical self-assembly from micelles to nanowires[70]

    图  10  nGP-(PCLm2共聚物的化学结构和调节亲水和疏水嵌段长度获得的纳米结构[71]

    Figure  10.  General chemical structures of nGP-(PCLm2 copolymers and nanostructures obtained by tuning the hydrophilic and hydrophobic block length[71]

    图  11  MPepP18(Cu2+)与万古霉素在金黄色葡萄球菌感染小鼠模型中的体内抗菌活性比较[77]

    Figure  11.  In vivo antibacterial activity of MPepP18(Cu2+) compared to vancomycin in a S. aureus infected mice model[77]

    图  12  (a)MAG-Tn3的结构;MAG-Tn3在HLA转基因小鼠(b)DR1 * A2和(c)DR1中诱导抗Tn抗体;(d)收集这些小鼠的血清,通过ELISA(b和c)和FACS对Tn阳性Jurkat细胞的Tn识别进行了分析;(e)用图(c)中的血清对Jurkat细胞的抗体介导的细胞毒性进行了评估[83]

    Figure  12.  (a) Structure of MAG-Tn3; MAG-Tn3 induced anti-Tn antibodies in HLA-transgenic mice (b) DR1 * A2 and (c) DR1; (d) Sera from these mice were collected and they were analyzed for Tn recognition by ELISA (b and c) and by FACS on Tn-positive Jurkat cells; (e) Antibody-mediated cytotoxicity was assessed on Jurkat cells with sera from Figure (c)[83]

    图  13  (a)在Gp凝胶表面培养后的HUVECs活/死检测荧光图像;(b)荧光素(FITC)-鬼笔环肽对培养于Gp凝胶表面的HUVECs细胞骨架F-肌动蛋白染色;(c)图(b)所示方框区域的高倍图像;(d)在Gp凝胶上培养5 d,用血细胞计测定HUVECs细胞密度[63]

    Figure  13.  (a) Fluorescence images of the live/dead assays of HUVECs cultured on the surface of Gp gel over the course; (b) Cytoskeletal F-actin staining of HUVECs cultured on the surface of Gp gel by fluorescein (FITC)-phalloidin; (c) A high-magnification image of the boxed area shown in image(b); (d) Cell densities of HUVECs determined by cell counting with a hemocytometer over the course of 5 d culture on Gp gel[63]

    图  14  (a)微计算机断层扫描(μCT)的代表性体积渲染(黄色箭头表示融合); (b)融合块的数字矢状切面,该融合物来自用 100 ng BMP-2和PA 1纳米结构处理过的动物(体积渲染是从高分辨率同步加速器X射线μCT获得的); (c)L4-L5后外侧脊柱标 本矢状横断面的H&E染色

    Figure  14.  (a) Representative volume renderings from μCT (yellow arrows indicate fusion); (b)Digital sagittal section through the fusion mass from an animal treated with 100 ng BMP-2 and PA 1 nanostructures (the volume rendering was obtained from high-resolution synchrotron X-ray μCT); (c)Representative sagittal cross-sectional images of L4-L5 posterolateral spine specimens with H&E staining

  • [1] CHEN J, ZOU X N. Self-assemble peptide biomaterials and their biomedical applications [J]. Bioactive Materials,2019,4:120-131. doi: 10.1016/j.bioactmat.2019.01.002
    [2] XIONG M H, BAO Y, XU X, et al. Selective killing of helicobacter pylori with pH-responsive helix-coil conformation transitionable antimicrobial polypeptides [J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(48):12675-12680. doi: 10.1073/pnas.1710408114
    [3] SONG S X, WANG J Y, CHENG Z F, et al. Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation [J]. Chemical Science,2020,11:1383-1393. doi: 10.1039/C9SC05808G
    [4] TAN J L, ZHANG M, HAI Z J, et al. Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration [J]. ACS Nano,2019,13(5):5616-5622. doi: 10.1021/acsnano.9b00788
    [5] ZHENG Z, CHEN P Y, XIE M L, et al. Cell environment-differentiated self-assembly of nanofibers [J]. Journal of the American Chemical Society,2016,138(35):11128-11131. doi: 10.1021/jacs.6b06903
    [6] ZHAO X X, LI L L, ZHAO Y, et al. In situ self-assembled nanofibers precisely target cancer: Associated fibroblasts for improved tumor imaging [J]. Angewandte Chemie: International Edition,2019,58(43):15287-15294.
    [7] LI L L, AN H W, PENG B, et al. Self-assembled nanomaterials: Design principle, nanostructural effect, functional mechanism as antimicrobial or detection agent [J]. Materials Horizons,2019,6(9):1794-1811. doi: 10.1039/C8MH01670D
    [8] CAI Q, FEI Y, HU L M, et al. Chemotaxis-instructed intracellular staphylococcus aureus infection detection by a targeting and self-assembly signal-enhanced photoacoustic probe [J]. Nano Letters,2018,18(10):6229-6236. doi: 10.1021/acs.nanolett.8b02286
    [9] DONNELLY R P, FINLAY D K. Glucose, glycolysis and lymphocyte responses [J]. Molecular Immunology,2015,68(2):513-519.
    [10] VARKI A. Biological roles of glycans [J]. Glycobiology,2017,7(1):3-49. doi: 10.1093/glycob/cww086
    [11] APWEILER R, HERMJAKOB H, SHARON N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database [J]. Biochimica et Biophysica Acta,1999,1473(1):4-8.
    [12] DWEK R A. Glycobiology: Toward understanding the function of sugars [J]. Chem Rev,1996,96(2):683-720. doi: 10.1021/cr940283b
    [13] VARKI A. Biological roles of oligosaccharides: All of the theories are correct [J]. Glycobiology,1993,3(2):97-130. doi: 10.1093/glycob/3.2.97
    [14] OLIVEIRA-FERRER L, LEGLER K, MILDE-LANGOSCH K. Role of protein glycosylation in cancer metastasis [J]. Seminars in Cancer Biology,2017,44:141-152. doi: 10.1016/j.semcancer.2017.03.002
    [15] NG B G,FREEZE H H. Perspectives on glycosylation and its congenital disorders [J]. Trends in Genetics,2018,34(6):466-476.
    [16] REITTER J N, MEANS R E, DESROSIERS R C. A role for carbohydrates in immune evasion in AIDS [J]. Nat Med,1998,4:679-684. doi: 10.1038/nm0698-679
    [17] MALHOTRA R, WORMALD M R, RUDD P M, et al. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein [J]. Nat Med,1995,1:237-243. doi: 10.1038/nm0395-237
    [18] LU W, ZONG C, CHOPRA P, et al. Controlled chemoenzymatic synthesis of heparan sulfate oligosaccharides [J]. Angewandte Chemie: International Edition,2018,57(19):5438-5442. doi: 10.1002/anie.201802185
    [19] MARCO C, PIERRE S, ARTEM K, et al. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice [J]. Nature Chemical Biology,2014,10:950-956. doi: 10.1038/nchembio.1650
    [20] ZHOU P, SHE Y, DONG N, et al. Alpha-kinase 1 is a cytosolic innate immune receptor for bacterial ADP-heptose [J]. Nature,2018,561:122-126. doi: 10.1038/s41586-018-0433-3
    [21] WANG H, YANG B, WANG Y, et al. β-Glucan as an immune activator and a carrier in the construction of a synthetic MUC1 vaccine [J]. Chemical Communications,2019,55(2):253-256. doi: 10.1039/C8CC07691J
    [22] WU Y, XIONG D C, CHEN S C, et al. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units [J]. Nature Communications,2017,8:14851. doi: 10.1038/ncomms14851
    [23] LI T, LIU L, WEI N, et al. An automated platform for the enzyme-mediated assembly of complex oligosaccharides [J]. Nature Chemistry,2019,11:229-236. doi: 10.1038/s41557-019-0219-8
    [24] PLANTE O J, PALMACCI E R, SEEBERGER P H. Automated solid-phase synthesis of oligosaccharides [J]. Science,2001,291(5508):1523. doi: 10.1126/science.1057324
    [25] HENDRICKS M P, SATO K, PALMER L C, et al. Supramolecular assembly of peptide amphiphiles [J]. Accounts of Chemical Research,2017,50(10):2440-2448. doi: 10.1021/acs.accounts.7b00297
    [26] LEE S S, FYRNER T, CHEN F, et al. Sulfated glycopeptide nanostructures for multipotent protein activation [J]. Nature Nanotechnology,2017,12:821-829. doi: 10.1038/nnano.2017.109
    [27] DESHMUKH S A, SOLOMON L A, KAMATH G, et al. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles [J]. Nature Communications,2016,7:12367. doi: 10.1038/ncomms12367
    [28] LOU S, WANG X, YU Z, et al. Peptide tectonics: Encoded structural complementarity dictates programmable self-assembly [J]. Advanced Science,2019,6(13):1802043. doi: 10.1002/advs.201802043
    [29] DAVIES J E D. Physical Methods in Supramolecular Chemistry. [M]. UK, Oxford, Pergamon Press, 1996: 426.
    [30] LEHN J M, SANDERS J K. Supramolecular Chemistry: Concepts and Perspectives [M]. USA, New Jersey, John Wiley & Sons Inc, 1995:139.
    [31] QI G B, GAO Y J, WANG L, et al. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy [J]. Advanced Materials,2018,30(22):1703444. doi: 10.1002/adma.201703444
    [32] BODANSZKY M, NATARAJAN S. Side reactions in peptide synthesis: II. Formation of succinimide derivatives from aspartyl residues [J]. Journal of Organic Chemistry,1975,40(17):2495-2499. doi: 10.1021/jo00905a016
    [33] SEITZ O. Glycopeptide synthesis and the effects of glycosylation on protein structure and activity [J]. ChemBioChem,2000,1(4):214-246. doi: 10.1002/1439-7633(20001117)1:4<214::AID-CBIC214>3.0.CO;2-B
    [34] GROGAN M J, PRATT M R, MARCAURELLE L A, et al. Homogeneous glycopeptides and glycoproteins for biological investigation [J]. Annual Review of Biochemistry,2002,71(1):593-634. doi: 10.1146/annurev.biochem.71.110601.135334
    [35] CARPINO L A, HAN G Y. 9-Fluorenylmethoxycarbonyl amino-protecting group [J]. The Journal of Organic Chemistry,1972,37(22):3404-3409. doi: 10.1021/jo00795a005
    [36] CARPINO L A. 1-Hydroxy-7-azabenzotriazole: An efficient peptide coupling additive [J]. Journal of the American Chemical Society,1993,115(10):4397-4398. doi: 10.1021/ja00063a082
    [37] ALBERICIO F, CARPINO L A. Coupling reagents and activation[J]. Methods Enzymol, 1997, 289: 104-126.
    [38] COSTE J, LE-NGUYEN D, CASTRO B. PyBOP: A new peptide coupling reagent devoid of toxic by-product [J]. Tetrahedron Letters,1990,31(2):205-208. doi: 10.1016/S0040-4039(00)94371-5
    [39] KIHLBERG J, VULJANIC T. Piperidine is preferable to morpholine for Fmoc cleavage in solid phase synthesis of O-linked glycopeptides [J]. Tetrahedron Letters,1993,34(38):6135-6138. doi: 10.1016/S0040-4039(00)61749-5
    [40] VULJANIC T, BERGQUIST K E, CLAUSEN H, et al. Piperidine is preferred to morpholine for Fmoc cleavage in solid phase glycopeptide synthesis as exemplified by preparation of glycopeptides related to HIV gp120 and mucins [J]. Tetrahedron,1996,52(23):7983-8000. doi: 10.1016/0040-4020(96)00369-9
    [41] SCHULTHEISS-REIMANN P, KUNZ P D H. O-Glycopeptide synthesis using 9-fluorenylmethoxycarbonyl (Fmoc)-protected synthetic units [J]. Angewandte Chemie: International Edition in English,1983,22(1):62-63.
    [42] SJÖLIN P, ELOFSSON M, KIHLBERG J. Removal of acyl protective groups from glycopeptides: Base does not epimerize peptide stereocenters, and β-elimination is slow [J]. The Journal of Organic Chemistry,2014,61(2):560-565.
    [43] DAWSON P E, KENT S B H. Synthesis of native proteins by chemical ligation [J]. Annual Review of Biochemistry,2000,69(1):923-960. doi: 10.1146/annurev.biochem.69.1.923
    [44] DAWSON P, MUIR T, CLARK-LEWIS I, et al. Synthesis of proteins by native chemical ligation [J]. Science,1994,266(5186):776-779. doi: 10.1126/science.7973629
    [45] TILMAN M H, CARINE M M, CASSIAN B, et al. Total chemical synthesis of enzymatically active human type II secretory phospholipase A2 [J]. Proceedings of the National Academy of Sciences of the United States of America,1997,94(15):7845-7850.
    [46] ZHANG L, TAM J P. Synthesis and application of unprotected cyclic peptides as building blocks for peptide dendrimers [J]. Journal of the American Chemical Society,1997,119(10):2363-2370. doi: 10.1021/ja9621105
    [47] BRASK J, ALBERICIO F, JENSEN K J. Fmoc solid-phase synthesis of peptide thioesters by masking as trithioortho esters [J]. Organic Letters,2003,5(16):2951-2953. doi: 10.1021/ol0351044
    [48] DONG Y W, CHEN Y, ZHU D D, et al. Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy [J]. Journal of Controlled Release,2020,322(10):416-425. doi: 10.1016/j.jconrel.2020.04.003
    [49] DONG Y W, YU T Z, DING L, et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy [J]. Journal of the American Chemical Society,2018,140(47):16264-16274. doi: 10.1021/jacs.8b10021
    [50] LIU X X, WANG Y, CHEN C, et al. A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species [J]. Advanced Functional Materials,2016,26(47):8594-8603. doi: 10.1002/adfm.201604192
    [51] WEI T, CHEN C, LIU J, et al. Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(10):2978-2983. doi: 10.1073/pnas.1418494112
    [52] LIU X X, ZHOU J H, YU T Z, et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems [J]. Angewandte Chemie: International Edition,2014,53(44):11822-11827. doi: 10.1002/anie.201406764
    [53] REYMOND J L, BERGMANN M, DARBRE T. Glycopeptide dendrimers as pseudomonas aeruginosa biofilm inhibitors [J]. Chemical Society Reviews,2013,42(11):4814-4822. doi: 10.1039/c3cs35504g
    [54] BERGMANN M, MICHAUD G, VISINI R, et al. Multivalency effects on pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA [J]. Organic & Biomolecular Chemistry,2016,14(1):138-148.
    [55] MICHAUD G, VISINI R, BERGMANN M, et al. Overcoming antibiotic resistance in pseudomonas aeruginosa biofilms using glycopeptide dendrimers [J]. Chemical Science,2016,7(1):166-182. doi: 10.1039/C5SC03635F
    [56] BOUVIER B. Optimizing the multivalent binding of the bacterial lectin LecA by glycopeptide dendrimers for therapeutic purposes [J]. Journal of Chemical Information and Modeling,2016,56(6):1193-1204. doi: 10.1021/acs.jcim.6b00146
    [57] DUINKERKEN S, HORREVORTS S K, KALAY H, et al. Glyco-dendrimers as intradermal anti-tumor vaccine targeting multiple skin DC subsets [J]. Theranostics,2019,9(20):5797-5809. doi: 10.7150/thno.35059
    [58] RENAUDET O, DASGUPTA G, BETTAHI I, et al. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity [J]. Plos One,2010,5(6):e11216.
    [59] GRIGALEVICIUS S, CHIERICI S, RENAUDET O, et al. Chemoselective assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines [J]. Bioconjugate Chemistry,2005,16(5):1149-1159. doi: 10.1021/bc050010v
    [60] RESTUCCIA A, HUDALLA G A. Tuning carbohydrate density enhances protein binding and inhibition by glycosylated-sheet peptide nanofibers [J]. Biomaterials Science,2018,6(9):2273-2542. doi: 10.1039/C8BM90043D
    [61] RESTUCCIA A, FETTIS M M, FARHADI S A, et al. Evaluation of self-assembled glycopeptide nanofibers modified with N,N '-diacetyllactosamine for selective galectin-3 recognition and inhibition [J]. ACS Biomaterials Science & Engineering,2018,4(10):3451-3459.
    [62] YANG J, DU Q, LI L, et al. Glycosyltransferase-induced morphology transition of glycopeptide self-assemblies with proteoglycan residues [J]. ACS Macro Letters,2020,9(7):929-936. doi: 10.1021/acsmacrolett.0c00306
    [63] QI J, YAN Y, CHENG B, et al. Enzymatic formation of an injectable hydrogel from a glycopeptide as a biomimetic scaffold for vascularization [J]. ACS Appl Mater Interfaces,2018,10(7):6180-6189. doi: 10.1021/acsami.7b18535
    [64] LIU J, SUN Z L, YUAN Y Q, et al. Peptide glycosylation generates supramolecular assemblies from glycopeptides as biomimetic scaffolds for cell adhesion and proliferation [J]. ACS Applied Materials & Interfaces,2016,8(11):6917-6924.
    [65] WANG H X, LIU Z C, AN C J, et al. Self-assembling glycopeptide conjugate as a versatile platform for mimicking complex polysaccharides [J]. Advanced Science,2020,7(16):2001264. doi: 10.1002/advs.202001264
    [66] LIU Y F, SUN Z Y, CHEN P G, et al. Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine [J]. Bioconjugate Chemistry,2015,26(8):1439-1442. doi: 10.1021/acs.bioconjchem.5b00150
    [67] RAMADAN S, YANG W, ZHANG Z, et al. Synthesis of chondroitin sulfate a bearing syndecan-1 glycopeptide [J]. Organic Letters,2017,19(18):4838-4841. doi: 10.1021/acs.orglett.7b02271
    [68] FENG Z J, SU Q, ZHANG C N, et al. Bioinspired nanofibrous glycopeptide hydrogel dressing for accelerating wound healing: A cytokine-free, M2-type macrophage polarization approach [J]. Advanced Functional Materials,2006,30(52):2006454.
    [69] RESTUCCIA A, SEROSKI D T, KELLEY K L, et al. Hierarchical self-assembly and emergent function of densely glycosylated peptide nanofibers [J]. Communications Chemistry,2019,2:53. doi: 10.1038/s42004-018-0104-1
    [70] LIU Y, ZHANG Y, WANG Z, et al. Building nanowires from micelles: Hierarchical self-assembly of alternating amphiphilic glycopolypeptide brushes with pendants of high-mannose glycodendron and oligophenylalanine [J]. J Am Chem Soc,2016,138(38):12387-12394. doi: 10.1021/jacs.6b05044
    [71] PATI D, DAS S, PATIL N G, et al. Tunable nanocarrier morphologies from glycopolypeptide-based amphiphilic biocompatible star copolymers and their carbohydrate specific intracellular delivery [J]. Biomacromolecules,2016,17(2):466-475. doi: 10.1021/acs.biomac.5b01354
    [72] DAS S, SHARMA D K, CHAKRABARTY S, et al. Bioactive polymersomes self-assembled from amphiphilic PPO-GlycoPolypeptides: Synthesis, characterization, and dual-dye encapsulation [J]. Langmuir,2015,31(11):3402-3412. doi: 10.1021/la503993e
    [73] TIAN Z, WANG M, ZHANG A Y, et al. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release [J]. Polymer,2008,49(2):446-454. doi: 10.1016/j.polymer.2007.11.048
    [74] HUANG Y C, ARHAM M, JAN J S. Bioactive vesicles from saccharide- and hexanoyl-modified poly(L-lysine) copolypeptides and evaluation of the cross-linked vesicles as carriers of doxorubicin for controlled drug release [J]. European Polymer Journal,2013,49(3):726-737. doi: 10.1016/j.eurpolymj.2012.11.020
    [75] HUANG Y C, YANG Y S, LAI T Y, et al. Lysine-block-tyrosine block copolypeptides: Self-assembly, cross-linking, and conjugation of targeted ligand for drug encapsulation [J]. Polymer,2012,53(4):913-922. doi: 10.1016/j.polymer.2012.01.010
    [76] XIAO C S, DING J X, LI Y C, et al. Physical interaction induced self-assembly of glycopeptide and doxorubicin at physiological pH as promising hepatoma-targeted nanomedicine [J]. Journal of Controlled Release,2013,172(1):E23-E24.
    [77] CAI Q, FEI Y, AN H W, et al. Macrophage-instructed intracellular staphylococcus aureus killing by targeting photodynamic dimers [J]. ACS Applied Materials & Interfaces,2018,10(11):9197-9202.
    [78] LI J, LIANG S, YAN Y, et al. O-Mannosylation affords a glycopeptide hydrogel with inherent antibacterial activities against E. coli via multivalent interactions between lectins and supramolecular assemblies [J]. Macromol Biosci,2019,19(9):e1900124. doi: 10.1002/mabi.201900124
    [79] PRANANTYO D, XU L Q, HOU Z, et al. Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine [J]. Polymer Chemistry,2017,8(21):3364-3373. doi: 10.1039/C7PY00441A
    [80] DENNIS J W, GRANOVSKY M, WARREN C E. Glycoprotein glycosylation and cancer progression [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1473(1):21-34. doi: 10.1016/S0304-4165(99)00167-1
    [81] STERGIOU N, GLAFFIG M, JONULEIT H, et al. Immunization with a synthetic human MUC1 glycopeptide vaccine against tumor-associated MUC1 breaks tolerance in human MUC1 transgenic mice [J]. ChemMedChem,2017,12(17):1424-1428. doi: 10.1002/cmdc.201700387
    [82] CHEN P G, HU H G, SUN Z Y, et al. Fully synthetic invariant NKT cell-dependent self-adjuvanting antitumor vaccines eliciting potent immune response in mice [J]. Molecular Pharmaceutics,2020,17(2):417-425.
    [83] GANNEAU C, SIMENEL C, EMPTAS E, et al. Large-scale synthesis and structural analysis of a synthetic glycopeptide dendrimer as an anti-cancer vaccine candidate [J]. Organic Biomolecular Chemistry,2017,15(1):114-123.
    [84] YAYLACI S U, EKIZ M S, ARSLAN E, et al. Supramolecular GAG-like self-assembled glycopeptide nanofibers induce chondrogenesis and cartilage regeneration [J]. Biomacromolecules,2016,17(2):679-689. doi: 10.1021/acs.biomac.5b01669
  • 加载中
图(14)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  179
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2021-04-23
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回