高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上转换粒子辅助近红外光诱导反向原子转移自由基聚合

张智慧 朱叶 罗静 刘仁 刘晓亚

张智慧, 朱叶, 罗静, 刘仁, 刘晓亚. 上转换粒子辅助近红外光诱导反向原子转移自由基聚合[J]. 功能高分子学报, 2021, 34(5): 468-475. doi: 10.14133/j.cnki.1008-9357.20210208001
引用本文: 张智慧, 朱叶, 罗静, 刘仁, 刘晓亚. 上转换粒子辅助近红外光诱导反向原子转移自由基聚合[J]. 功能高分子学报, 2021, 34(5): 468-475. doi: 10.14133/j.cnki.1008-9357.20210208001
ZHANG Zhihui, ZHU Ye, LUO Jing, LIU Ren, LIU Xiaoya. Near-Infrared Light Induced Reverse Atom Transfer Radical Polymerization Assisted by Upconversion Particles[J]. Journal of Functional Polymers, 2021, 34(5): 468-475. doi: 10.14133/j.cnki.1008-9357.20210208001
Citation: ZHANG Zhihui, ZHU Ye, LUO Jing, LIU Ren, LIU Xiaoya. Near-Infrared Light Induced Reverse Atom Transfer Radical Polymerization Assisted by Upconversion Particles[J]. Journal of Functional Polymers, 2021, 34(5): 468-475. doi: 10.14133/j.cnki.1008-9357.20210208001

上转换粒子辅助近红外光诱导反向原子转移自由基聚合

doi: 10.14133/j.cnki.1008-9357.20210208001
基金项目: 国家自然科学基金(51803079)
详细信息
    作者简介:

    张智慧(1996—),女,硕士生,研究方向为光诱导可控自由基聚合。E-mail:1982838195@qq.com

    通讯作者:

    刘 仁,E-mail:liuren@jiangnan.edu.cn

  • 中图分类号: O631.5

Near-Infrared Light Induced Reverse Atom Transfer Radical Polymerization Assisted by Upconversion Particles

  • 摘要: 利用上转换粒子(UCP)能够将长波长的近红外光转换成短波长的紫外-可见光的特性,以UCP为内部光源、苯基双(2,4,6-三甲基苯甲酰基)氧化膦(BAPO)为引发剂,溴化铜(CuBr2)/N, N, N′, N″, N″-五甲基二乙三胺(PMDETA)为催化剂,在980 nm近红外光的辐照下,实现了近红外波段下的光诱导反向原子转移自由基聚合(ATRP)。通过调节聚合条件,对聚合过程及聚合机理进行了探究。结果表明:UCP辅助近红外光诱导反向ATRP适用于甲基丙烯酸甲酯(MMA)、丙烯酸甲酯(MA)以及苯乙烯(St)等单体,且具有活性聚合的特性,所得聚合物分子量可控、分子量分布较窄,且分子量随单体转化率的增大而线性增加。

     

  • 图  1  UCP辅助近红外光诱导反向ATRP反应示意图

    Figure  1.  Schematic illustration of near-infrared light induced reverse ATRP with the assistance of UCP

    图  2  近红外光诱导反向ATRP反应装置图

    Figure  2.  Digital photo of the reaction devices of the NIR photoinduced reverse ATRP

    图  3  镧系元素掺杂UCP的(a)TEM照片、(b)粒径分布(插图:在980 nm激光照射下的数码照片)

    Figure  3.  (a) TEM images and (b) size distribution of the lanthanide doped UCP (Inset: The digital photo under the excitation of 980 nm NIR laser)

    图  4  (a)BAPO中的紫外-可见分光光谱及UCP的荧光发射光谱;(b)在UCP存在下BAPO的紫外-可见分光光谱

    Figure  4.  (a) UV-Vis spectra of BAPO and emission spectra of UCP; (b) UV-Vis spectra changes of BAPO with the existence of UCP

    m (UCP) = 120 mg; ρ (BAPO) = 0.52 mg/mL; Solvent: DMF

    图  5  PMMA的(a)聚合动力学曲线、(b)单体转化率与Mn及分子量分布的关系和(c) GPC淋出曲线

    Figure  5.  (a) Kinetic plot, (b) Mn and PDI as a function of conversion and (c) GPC evolution traces of PMMA

    c (MMA)∶c (BAPO)∶c (CuBr2)∶c (PMDETA) = 300∶1∶1∶3; m (UCP)∶m (MMA) = 5%; Solvent: DMF

    图  6  UCP辅助近红外光诱导反向ATRP的反应机理

    Figure  6.  Proposed mechanism of NIR light induced reverse ATRP assisted by UCP

    图  7  以PMMA为大分子引发剂进行扩链反应前后的GPC淋出曲线

    Figure  7.  GPC evolution traces of PMMA macroinitiator before and after chain extension

    c (MMA)∶c (BAPO)∶c (CuBr2c (PMDETA) = 300∶1∶1∶3; m(UCP)∶m(MMA) = 5%; c(MMA)∶c(PMMA)∶c(CuBr2)∶c(bpy) = 300∶1∶1∶3

    表  1  不同反应条件下的聚合结果

    Table  1.   Polymerization results under different conditions

    NOm(UCP)∶
    m(MMA)/%
    SolventMonomerc(Monomer)∶ c(BAPO)∶ c(CuBr2)∶ c(PMDETA)C/%Mn,GPC 1)Mn,th 2)PDI 2)
    10DMFMMA300∶1∶1∶3
    25DMFMMA300∶0∶1∶3
    35DMFMMA300∶1∶0∶372.54.64×10422.6×1032.60
    45DMFMMA300∶1∶1∶315.63.60×1042.8×1031.56
    53)5DMFMMA300∶1∶1∶3
    65DMFMA300∶1∶1∶313.11.28×1043.4×1031.53
    75DMFSt300∶1∶1∶312.21.20×1043.8×1031.32
    1)Mn,GPC and PDI were measured by GPC; 2)Mn,th = 300C mmonomer; 3)Reaction was carried out at 70 ℃ oil bath in dark for 4 h. Polymerizations were carried out under 980 nm NIR laser with 16.5 W/cm2 intensity for 5 h
    下载: 导出CSV
  • [1] MATYJASZEWSKI K, XIA J. Atom transfer radical polymerization [J]. Chemical Reviews,2001,101(9):2921-2990. doi: 10.1021/cr940534g
    [2] CORRIGAN N, YEOW J, BOYER C et al. Seeing the light: Advancing materials chemistry through photopolymerization [J]. Angewandte Chemie : International Edition,2019,131(16):5224-5243.
    [3] 龚红红, 马明煊, 陈茂, 等. 光致氧化还原调控的活性聚合 [J]. 功能高分子学报,2019,32(3):271-291.

    GONG H H, MA M X, CHEN M et al. Photoredox controlled living polymerization [J]. Journal of Functional Polymers,2019,32(3):271-291.
    [4] GUAN Z, SMART B. A remarkable visible light effect on atom-transfer radical polymerization [J]. Macromolecules,2000,33(18):6904-6906. doi: 10.1021/ma000646b
    [5] TASDELEN M, UYGUN M, YAGCI Y. Photoinduced controlled radical polymerization [J]. Macromolecular Rapid Communication,2011,32:58-62.
    [6] KONKOLEWICZ D, SCHRÖDER K, MATYJASZEWSKI K, et al. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst [J]. ACS Macro Letters,2012,1(10):1219-1223. doi: 10.1021/mz300457e
    [7] CIFTCI M, TASDELEN M, YAGCI Y. Sunlight induced atom transfer radical polymerization by using dimanganese decacarbonyl [J]. Polymer Chemistry,2014,5(2):600-606. doi: 10.1039/C3PY01009K
    [8] PAN X, YAGCI Y, MATYJASZEWSKI K, et al. Photomediated controlled radical polymerization [J]. Progress in Polymer Science,2016,62:73-125.
    [9] RAVETZ B, PUN A, CAMPOS L, et al. Photoredox catalysis using infrared light via triplet fusion upconversion [J]. Nature,2019,565:343-346. doi: 10.1038/s41586-018-0835-2
    [10] MCKENZIE T, BOYER C, QIAO G, et al. Beyond traditional RAFT: Alternative activation of thiocarbonylthio compounds for controlled polymerization [J]. Advanced Science,2016,3(9):1500394. doi: 10.1002/advs.201500394
    [11] VOGEL A, VENUGOPALAN V. Mechanisms of pulsed laser ablation of biological tissues [J]. Chemical Reviews,2003,103(5):577-644.
    [12] CHEN Z, SUN W, WU S, et al. Upconverting-nanoparticle-assisted photochemistry induced by low-intensity near-infrared light: How low can we go? [J]. Chemistry : A European Journal,2015,21(25):9165-9170. doi: 10.1002/chem.201500108
    [13] TAHYA K C, YAGCI Y, STREHMEL B, et al. Near-infrared sensitized photoinduced atom-transfer radical polymerization (ATRP) with a copper(II) catalyst concentration in the ppm range [J]. Angewandte Chemie : International Edition,2018,57(26):7898-7902. doi: 10.1002/anie.201802964
    [14] BISOYI H, LI Q. Light-driven liquid crystalline materials: From photo-induced phase transitions and property modulations to applications [J]. Chemical Reviews,2016,116(24):15089-15166. doi: 10.1021/acs.chemrev.6b00415
    [15] WÜRTH C, FISCHER S, GRAUEL B, et al. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles [J]. Journal of the American Chemical Society,2018,140(14):4922-4928.
    [16] ZHANG Z, SHIKHA S, LIU J, et al. Upconversion nanoprobes: Recent advances in sensing applications [J]. Analytical Chemistry,2019,91(1):548-568. doi: 10.1021/acs.analchem.8b04049
    [17] ZHANG W, HE J, LV C, et al. Atom transfer radical polymerization driven by near-infrared light with recyclable upconversion nanoparticles [J]. Macromolecules,2020,53(12):4678-4684. doi: 10.1021/acs.macromol.0c00850
    [18] LI Z, LIU R, YAGCI Y, et al. Near-infrared-induced cationic polymerization initiated by using upconverting nanoparticles and titanocene [J]. Macromolecular Rapid Communication,2019,40(9):1900047. doi: 10.1002/marc.201900047
    [19] DING C, WANG J, ZHANG W, et al. Platform of near-infrared light-induced reversible deactivation radical polymerization: Upconversion nanoparticles as internal light sources [J]. Polymer Chemistry,2016,7(48):7370-7374.
    [20] TASDELEN M, UYGUN M, YAGCI Y, et al. Studies on photoinduced ATRP in the presence of photoinitiator [J]. Macromolecular Chemistry and Physics,2011,212(18):2036-2042. doi: 10.1002/macp.201100267
    [21] CHEN Z, XUE W, WU S, et al. Near-infrared light driven photopolymerization based on photon upconversion [J]. ChemPhotoChem,2019,3(11):1077-1083. doi: 10.1002/cptc.201900007
    [22] YAGCI Y, TASDELEN M, JOCKUSCH S, et al. Reduction of Cu(II) by photochemically generated phosphonyl radicals to generate Cu(I) as catalyst for atom transfer radical polymerization and azide-alkyne cycloaddition click reactions [J]. Polymer,2014,55(16):3468-3474. doi: 10.1016/j.polymer.2014.06.068
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  148
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 网络出版日期:  2021-04-22
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回