高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D1-A-D2型高效红光热激活延迟荧光有机发光二极管

何益辉 唐艳青 谢凤鸣 周经雄 曾馨逸 唐建新

何益辉, 唐艳青, 谢凤鸣, 周经雄, 曾馨逸, 唐建新. D1-A-D2型高效红光热激活延迟荧光有机发光二极管[J]. 功能高分子学报, 2021, 34(5): 452-459. doi: 10.14133/j.cnki.1008-9357.20210204001
引用本文: 何益辉, 唐艳青, 谢凤鸣, 周经雄, 曾馨逸, 唐建新. D1-A-D2型高效红光热激活延迟荧光有机发光二极管[J]. 功能高分子学报, 2021, 34(5): 452-459. doi: 10.14133/j.cnki.1008-9357.20210204001
HE Yihui, TANG Yanqing, XIE Fengming, ZHOU Jingxiong, ZENG Xinyi, TANG Jianxin. High-Efficiency Organic Light-Emitting Diodes With D1-A-D2 Type Red Thermally Activated Delayed Fluorescence[J]. Journal of Functional Polymers, 2021, 34(5): 452-459. doi: 10.14133/j.cnki.1008-9357.20210204001
Citation: HE Yihui, TANG Yanqing, XIE Fengming, ZHOU Jingxiong, ZENG Xinyi, TANG Jianxin. High-Efficiency Organic Light-Emitting Diodes With D1-A-D2 Type Red Thermally Activated Delayed Fluorescence[J]. Journal of Functional Polymers, 2021, 34(5): 452-459. doi: 10.14133/j.cnki.1008-9357.20210204001

D1-A-D2型高效红光热激活延迟荧光有机发光二极管

doi: 10.14133/j.cnki.1008-9357.20210204001
基金项目: 科技部重点研发计划(2016YFB0401002)
详细信息
    作者简介:

    何益辉(1998—),男,硕士生,从事有机发光材料的研究。E-mail:492736846@qq.com

    通讯作者:

    唐建新,E-mail:jxtang@suda.edu.cn

  • 中图分类号: O625

High-Efficiency Organic Light-Emitting Diodes With D1-A-D2 Type Red Thermally Activated Delayed Fluorescence

  • 摘要: 采用吩噁嗪(PXZ)片段作为具有分子刚性的强电子供体(D1)、三苯胺(TPA)片段作为具有大空间位阻的强电子供体(D2)、杂环芳烃构成的二苯并吩嗪(dibenzo[a, c]phenazine,BP)片段作为具有较强刚性的电子受体(A),开发了一种具有供体-受体-供体(D1-A-D2)型结构的新型高效红光热激活延迟荧光(TADF)材料(2T-BP-2P)。通过紫外-可见分光(UV-Vis)光谱、光致发光(PL)光谱、热重分析(TGA)和差示扫描量热(DSC)等对2T-BP-2P的光物理、电化学和热学性能进行了表征。结果表明,基于2T-BP-2P的器件实现了614.5 nm的红光发射,其外部量子效率(EQE)高达12.2%,国际照明委员会(CIE)坐标为(0.59,0.40)。

     

  • 图  1  2T-BP-2P的合成路径与分子结构

    Figure  1.  Synthetic route and molecular structure of 2T-BP-2P

    图  2  2T-BP-2P的(a)1H-NMR谱图、(b)13C-NMR谱图以及(c)质谱图

    Figure  2.  (a)1H-NMR, (b)13C-NMR and (c)mass spectra of 2T-BP-2P

    图  3  (a) 2T-BP-2P的UV-Vis、LTFL和LTPh谱图;(b) 2T-BP-2P在纯膜中的瞬态PL衰减曲线;(c) 2T-BP-2P的荧光光谱

    Figure  3.  (a) UV-Vis、LTFL and LTPh spactra of 2T-BP-2P; (b) Transient PL decay curve of 2T-BP-2P in neat film; (c) Fluorescence spectra of 2T-BP-2P

    图  4  2T-BP-2P的(a)TGA曲线和(b)DSC曲线

    Figure  4.  (a) TGA and (b) DSC curves of 2T-BP-2P

    图  5  基于2T-BP-2P的器件的能级图以及相关材料的分子结构

    Figure  5.  Device structure based on 2T-BP-2P and the molecular formula of the related materials

    图  6  基于2T-BP-2P的器件性能:(a) 电流密度-电压-亮度(J-V-L)特性曲线;(b) 外量子效率-亮度特性曲线;(c) 电致发光光谱;(d) 功率效率-亮度(PE-L)和电流效率-亮度(CE-L)特性曲线

    Figure  6.  Device performance based on 2T-BP-2P: (a) Current density-voltage-luminance characteristics; (b) EQE versus luminance curves; (c) EL spectra; (d) PE and CE versus luminance curves

    表  1  2T-BP-2P的DFT模拟计算结果

    Table  1.   DFT calculation results of 2T-BP-2P

    EmitterGeometryLUMO+1LUMOHOMOHOMO-1Energy levels
    2T-BP-2P EHOMO=−4.64 eV
    ELUMO=−2.48 eV
    ES1=1.319 eV
    ET1=1.317 eV
    ΔEST=0.002 eV
    下载: 导出CSV

    表  2  在不同掺杂浓度下基于客体材料2T-BP-2P的器件性能

    Table  2.   Device performance based on guest material 2T-BP-2P at different doping concentrations

    x/%Von/VλEL,max/nmEQEmax/%PEmax/(lm·W−1CEmax/(cd·A−1CIE
    x, y
    53.2598.19.1917.3717.70(0.54,0.45)
    103.1608.610.0414.3414.61(0.58,0.42)
    153.0614.512.2015.9915.78(0.59,0.40)
    202.9620.511.2613.0712.48(0.62,0.38)
    下载: 导出CSV
  • [1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Applied Physics Letters,1987,51(12):913-915. doi: 10.1063/1.98799
    [2] LEE J, CHEN H F, BATAGODA T, et al. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency [J]. Nature Materials,2015,15(1):92-98.
    [3] KUEI C Y, TSAI W L, TONG B, et al. Bis-tridentate Ir(III) complexes with nearly unitary RGB phosphorescence and organic light-emitting diodes with external quantum efficiency exceeding 31% [J]. Advanced Materials,2016,28(14):2795-2800. doi: 10.1002/adma.201505790
    [4] ROTHBERG L J, LOVINGER A J. Status of and prospects for organic electroluminescence [J]. Journal of Materials Research,1996,11(12):3174-3187. doi: 10.1557/JMR.1996.0403
    [5] LEE S Y, YASUDA T, YANG Y S, et al. Luminous butterflies: Efficient exciton harvesting by benzophenone derivatives for full-color delayed fluorescence OLEDs [J]. Angewandte Chemie International Edition,2014,53(25):6402-6406. doi: 10.1002/anie.201402992
    [6] JEON S K, LEE L, YOOK K S, et al. Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material [J]. Advanced Materials,2019,31(34):1803524. doi: 10.1002/adma.201803524
    [7] MITSUHIRO K. OLED Displays and Lighting[M]. Chichester, United Kingdom: Wiley/IEEE Press, 2017.
    [8] ENDO A, SATO K, YOSHIMURA K, et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes [J]. Applied Physics Letters,2011,98(8):083302. doi: 10.1063/1.3558906
    [9] ADACHI C. Third-generation organic electroluminescence materials [J]. Japanese Journal of Applied Physics,2014,53(6):060101. doi: 10.7567/JJAP.53.060101
    [10] UOYAMA H, GUOSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence [J]. Nature,2012,492(7428):234-238. doi: 10.1038/nature11687
    [11] SHU Y N, LEVINE B G. Simulated evolution of fluorophores for light emitting diodes [J]. The Journal of Chemical Physical,2015,142(10):104104. doi: 10.1063/1.4914294
    [12] AHN D H, KIM S W, LEE H, et al. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors [J]. Nature Photonics,2019,13(8):540-546. doi: 10.1038/s41566-019-0415-5
    [13] CHEN J X, TAO W W, et al. Red/near-infrared thermally activated delayed fluorescence OLEDs with near 100% internal quantum efficiency [J]. Angewandet Chemie: International Edition,2019,58(41):14660-14665.
    [14] LI J, NAKAGAWA T, MACDONALD J, et al. Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative [J]. Advanced Materials,2013,25(24):3319-3323. doi: 10.1002/adma.201300575
    [15] ZHANG Q S, KUWABARA H, POTSCAVAGE W J, et al. Anthraquinone-based intramolecular charge-transfer compounds: Computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence [J]. Journal of The American Chemical Society,2014,136(52):18070-18081. doi: 10.1021/ja510144h
    [16] ZHANG Y L, RAN Q, WANG Q, et al. High-efficiency red organic light-emitting diodes with external quantum efficiency close to 30% based on a novel thermally activated delayed fluorescence emitter [J]. Advanced Materials,2019,31(42):1902368. doi: 10.1002/adma.201902368
    [17] ZHAO B J, WANG H Q, HAN C M, et al. Highly efficient deep-red non-doped diodes based on a T-shape thermally activated delayed fluorescence emitter [J]. Angewandte Chemie: International Edition,2020,59(43):19042-19047. doi: 10.1002/anie.202008885
    [18] CHAN C Y, TANAKA M, NAKANOTANI H, et al. Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4 [J]. Nature Communications,2018,9:5036. doi: 10.1038/s41467-018-07482-6
    [19] XIE F M, AN Z D, XIE M, et al. tert-Butyl substituted hetero-donor TADF compounds for efficient solution-processed non-doped blue OLEDs [J]. Journal of Materials Chemistry C,2020,8(17):5769-5776. doi: 10.1039/D0TC00718H
    [20] ZOU S J, XIE F M, XIE M, et al. High-performance nondoped blue delayed fluorescence organic light-emitting diodes featuring low driving voltage and high brightness [J]. Advanced Science,2020,7(3):1902508. doi: 10.1002/advs.201902508
    [21] XIE F M, ZHOU J X, LI Y Q, et al. Effects of the relative position and number of donors and acceptors on the properties of TADF materials [J]. Journal of Materials Chemistry C,2020,8(28):9476-9494. doi: 10.1039/D0TC02252G
    [22] ZOU S J, SHEN Y, XIE F M, et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays [J]. Materials Chemistry Frontiers,2020,4(3):788-820. doi: 10.1039/C9QM00716D
    [23] XIE F M, ZENG X Y, ZHOU J X, et al. Intramolecular H-bond design for efficient orange-red thermally activated delayed fluorescence based on a rigid dibenzo[f, h]pyrido[2, 3-b]quinoxaline acceptor [J]. Journal of Materials Chemistry C,2020,8(44):15728-15734. doi: 10.1039/D0TC03965A
    [24] 马志华, 董文月, 邵世洋, 等. 聚苯乙烯类发光材料研究进展 [J]. 功能高分子学报,2019,32(5):550-557.

    MA Z H, DONG W Y, SHAO S Y, et al. Research progress on polystyrene-based electroluminescent materials [J]. Journal of Functional Polymers,2019,32(5):550-557.
    [25] 张婉, 蔡鑫烨, 李红坤, 等. 含氨基酸侧基的聚集诱导发光聚合物的合成及表征 [J]. 功能高分子学报,2019,32(6):711-717.

    ZHANG W, CAI X Y, LI H K, et al. Synthesis and characterization of an aggregation-induced emission-active polymer with amino acid-containing side chains [J]. Journal of Functional Polymers,2019,32(6):711-717.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  64
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回