高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高频印制电路板用低介电高分子材料的研究进展

廖凌元 彭忠泉 章明秋 阮文红

廖凌元, 彭忠泉, 章明秋, 阮文红. 高频印制电路板用低介电高分子材料的研究进展[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210203002
引用本文: 廖凌元, 彭忠泉, 章明秋, 阮文红. 高频印制电路板用低介电高分子材料的研究进展[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210203002
LIAO Lingyuan, PENG Zhongquan, ZHANG Mingqiu, RUAN Wenhong. Research Progress of Low Dielectric Polymers for High-Frequency Printed Circuit Boards[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210203002
Citation: LIAO Lingyuan, PENG Zhongquan, ZHANG Mingqiu, RUAN Wenhong. Research Progress of Low Dielectric Polymers for High-Frequency Printed Circuit Boards[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210203002

高频印制电路板用低介电高分子材料的研究进展

doi: 10.14133/j.cnki.1008-9357.20210203002
基金项目: 国家自然科学基金重点项目(52033011);广东省重点领域研发计划项目(2019B010929001);广州市科技计划项目(201902010050、202007020001)
详细信息
    作者简介:

    廖凌元(1990—),男,湖南衡阳人,博士生,主要从事低介电树脂研究。E-mail:liaoly5@mail2.sysu.edu.cn

    阮文红,中山大学化学学院教授,博士生导师。博士毕业于四川大学,曾赴美国康奈尔大学开展高级访问学者研究。长期从事聚合物及其复合材料的科研与教学,研究方向包括聚合物成型加工、聚合物共混及改性、聚合物及其纳米复合材料、功能高分子材料等。先后承担国家、省部级和企业科研项目多项,作为主持和参与人员获省部级科学技术奖励6项。主编和参编教材及专著5部,其中主编的《高分子加工原理与技术》入选“十一五”国家级规划教材

    通讯作者:

    阮文红,E-mail:cesrwh@mail.sysu.edu.cn

  • 中图分类号: TB322

Research Progress of Low Dielectric Polymers for High-Frequency Printed Circuit Boards

  • 摘要: 随着通信技术不断向着高频波段发展,以酚醛树脂和环氧树脂为基材的印制电路板(PCB)因其介电性能无法满足信号高速、低损耗传输而面临淘汰。因此,开发高频下具有低介电常数和低介电损耗,同时又具有良好耐热性、耐湿性和尺寸稳定的高分子材料用于制造高频PCB,对高频通信技术至关重要。其中聚苯并噁嗪、聚氰酸酯、聚四氟乙烯、聚酰亚胺和聚苯醚等高分子材料因本征介电常数和介电损耗较低、吸湿率小、耐热性好,在高频PCB领域受到广泛关注。针对近年国内外高频PCB用的低介电高分子材料的研究现状,从材料介电性质基本原理出发,综述了高频PCB用的低介电高分子材料的性质及其改性的研究进展。

     

  • 图  1  (a) PCB的结构示意图;(b)不同频段对PCB介质损耗的要求[5]

    Figure  1.  (a) Structure diagram of PCB; (b) PCB requirements for Df within different frequency ranges[5]

    图  2  PBZ的合成路线[15]

    Figure  2.  Synthetic route of PBZ[15]

    图  3  PDMS-PBZ 的(a)结构及(b)透射电镜图[20]

    Figure  3.  (a) Structure and (b) transmission electronic microscopic image of PDMS-PBZ[20]

    图  4  POSS-PU-PBZ 纳米复合材料的(a)介电常数和(b)介电损耗随频率的变化关系[24];(c)SBA-15/PBZ 纳米复合材料介电常数随频率的变化关系[25]

    Figure  4.  Frequency dependences of (a) dielectric constant and (b) dielectric loss of POSS-PU-PBZ nanocomposites[24]; (c) Frequency dependences of dielectric constant of SBA-15/PBZ nanocomposites[25]

    图  5  (a) CE的固化机理;(b) CE与羟基反应的机理;(c)CE与环氧基反应的机理[27]

    Figure  5.  (a) Curing mechanism of CE; (b) Mechanism of the reaction between CE and hydroxyls; (c) Mechanism of the reaction between CE and epoxy[27]

    图  6  (a) CE和cPES/CE的DSC曲线[32];(b) CE和M-CDP/CE的DSC曲线[33]

    Figure  6.  (a) DSC curves of CE and cPES/CE prepolymers[32]; (b) DSC curves of CE and M-CDP/CE prepolymers[33]

    图  7  (a) 空心硅管的TEM照片;(b) CE和HST/CE复合材料的DSC曲线;CE和HST/CE复合材料的(c)介电常数和(d)介电损耗随频率的变化[35]

    Figure  7.  (a) TEM image of HST; (b) DSC curves of CE and HST/CE hybrids; Frequency dependences of (c) dielectric constant and (d) dielectric loss of cured CE and HST/CE hybrids[35]

    图  8  (a) CE和GO/MnMOF/CE的DSC曲线[37];(b) CE和MSG/CE的DSC曲线[38]

    Figure  8.  (a) DSC curves of CE and GO/MnMOF/CE[37]; (b) DSC curves of CE and MSG/CE[38]

    图  9  PI的合成路线[55]

    Figure  9.  Synthetic route of PI[55]

    图  10  常温下聚酰亚胺和氟化石墨改性聚酰亚胺的介电性能随频率的变化关系

    Figure  10.  Frequency dependences of dielectric properties of polyimide and fluorographene hybrid polyimide films at room temperature[55]

    ■−Polyimide; ●−FSG-1/polyimide composite; ◆−FSG-2/polyimide composite; ▲−FSG-3/polyimide composite

    图  11  多孔PI和PI/rGO-PEG薄膜的SEM照片[61]

    Figure  11.  SEM images of porous PI and PI/rGO-PEG films[61]

    (a—c) Cross-sections of PI film, PI/rGO film, and porous PI/rGO-PEG10 film, respectively; (d) Optical image of PI and PI/rGO-PEG; (e—h) Cross-sections of porous PI/rGO-PEG films tuned by mass ratios of PEG to PAAC at 5%,10%, 20%, and 40%, respectively; (i—l) Cross sections of the enlarged areas in (e—h), respectively

    图  12  (a~l) 不同条件下制备得到多孔FPI的扫描电镜图(相对湿度/%:a—50, b—40, c—30; FPI质量浓度/(mg·mL−1):d—2.0, e—1.2, f—0.6; 温度/℃:g—25, h—30, i—35; 表面活性剂质量浓度/(mg·mL−1):j—0.02, k—0.06, l—0.1,其他参数相同);(m) 通过微乳液法制备具有孔结构的PI膜的示意图;(n) 复合膜的介电常数随孔隙率的变化[62]

    Figure  12.  (a—l) SEM images of the porous FPI films (Prepared under different humidities/%: a—50, b—40, c—30; mass concentrations of FPI/(mg·mL−1): d—2.0, e—1.2, f—0.6,;temperatures/℃: g—25, h—30, i—35;mass concentrations of surface active agent/(mg·mL−1): j—0.02, k—0.06, l—0.1, where the other parameters are the same); (m) Schematic of the formation of the composite PI films with porous structure through the microemulsion method; (n) Dielectric constant versus porosity of composite films[62]

    图  13  聚苯醚烯丙基化路线[64, 67]

    Figure  13.  Allylation route of PPO[64, 67]

    表  1  PBZ的高频介电性能[18, 19]

    Table  1.   High-frequency dielectric properties of PBZ[18, 19]

    Raw materialsXY1 GHz5 GHz10 GHz
    DkDfDkDfDkDf
    C(CF32CF22.400.024
    C(CH32CH22.900.010
    C(CF32CF22.200.008
    C(CH32CH23.000.010
    C(CH322.360.00462.260.0047
    2.880.01162.820.0113
    C(CH322.690.00512.610.0053
    3.140.02823.530.0243
    C(CH322.520.00442.540.0045
    2.880.01162.820.0113
    下载: 导出CSV

    表  2  X射线光电子能谱测定的SG及FSG的化学组成[55]

    Table  2.   Chemical compositions of SG and FSG determined by X-ray photoelectron spectroscope[55]

    Samplew (F)/%w (O)/%w (C)/%w(F)/w(C)Chemical composition
    SG0 ± 0.24.6 ± 0.295.4 ± 0.20CO0.05
    FSG-134.0 ± 0.29.4 ± 0.256.6 ± 0.20.65CF0.60O0.17
    FSG-240.9 ± 0.26.5 ± 0.252.6 ± 0.20.84CF0.78O0.12
    FSG-348.1 ± 0.23.5 ± 0.248.4 ± 0.21.02CF1.00O0.07
    下载: 导出CSV

    表  3  不同原料制备的PI的介电常数 (10 kHz)

    Table  3.   Dielectric constant of PI synthesized from different raw materials (10 kHz)

    SampleAnhydrideDiamineMass concentration/(g·cm−3Dielectric constant
    mPPy-PI1.3792.81
    mBPPy-PI1.3512.61
    mTPPy-PI1.3392.44
    下载: 导出CSV

    表  4  PI和PI/rGO-PEG多孔膜的孔隙率和介电性能[61]

    Table  4.   Porosity and dielectric properties of porous PI and PI/rGO-PEG films[61]

    SamplePorosity/%Dielectric constantDielectric loss
    PI27.42.770.0089
    PI/rGO21.63.860.0191
    PI/rGO-PEG529.32.610.0095
    PI/rGO-PEG1031.42.550.0095
    PI/rGO-PEG2041.42.180.0085
    PI/rGO-PEG4042.51.930.0091
    下载: 导出CSV
  • [1] LEE D, DAVYDOV A, MONDAL B, et al. From sub-terahertz to terahertz: Challenges and design considerations[C]//Proceedings of 2020 IEEE Wireless Communications and Networking Conference Workshops. Seoul: IEEE, 2020: 1-8.
    [2] ZHANG Y, GENG Z, NIU S, et al. Preparation and applications of low-dielectric constant poly aryl ether [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):175-185. doi: 10.1016/j.aiepr.2020.10.006
    [3] LIU C, WANG L, LIU S, et al. Fabrication strategies of polymer-based electromagnetic interference shielding materials [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):149-159. doi: 10.1016/j.aiepr.2020.10.002
    [4] LIN C H, CHIANG J C, WANG C S. Low dielectric thermoset: I. Synthesis and properties of novel 2, 6-dimethyl phenol-dicyclopentadiene epoxy [J]. Journal of Applied Polymer Science,2003,88(11):2607-2613. doi: 10.1002/app.11874
    [5] FENG S. Copper clad laminate for high frequency printed-circuit board in 5G era[D]. Yorkshire: University of York, 2018.
    [6] WANG L, LIU C, SHEN S, et al. Low dielectric constant polymers for high speed communication network [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):138-148. doi: 10.1016/j.aiepr.2020.10.001
    [7] SHI H, LIU X, LOU Y. Materials and micro drilling of high frequency and high speed printed circuit board: A review [J]. The International Journal of Advanced Manufacturing Technology,2018,100(1-4):827-841.
    [8] BROWN G B. Validity of the clausius-mosotti formula [J]. Nature,1942,150(3814):661-662.
    [9] ZONG L, LI C, ZU Y, et al. Preparation and properties of multi-fluorinated N-heterocycle-containing poly(phthalazinone ether)s with high strength and low dielectric constant [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):186-193. doi: 10.1016/j.aiepr.2020.10.003
    [10] ZHAO X, LIU H. Review of polymer materials with low dielectric constant [J]. Polymer International,2010:597-606.
    [11] JI Y, BAI Y, LIU X, et al. Progress of liquid crystal polyester (LCP) for 5G application [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):160-174. doi: 10.1016/j.aiepr.2020.10.005
    [12] HAMERTON I, HOWLIN B J, MITCHELL A L, et al. Systematic examination of thermal, mechanical and dielectrical properties of aromatic polybenzoxazines [J]. Reactive and Functional Polymers,2012,72(10):736-744. doi: 10.1016/j.reactfunctpolym.2012.07.001
    [13] KIM H J, BRUNOVSKA Z, ISHIDA H. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers [J]. Polymer,1999,40(23):6565-6573. doi: 10.1016/S0032-3861(99)00046-4
    [14] 张鹤, 陆馨, 姚红杰, 等. 腰果酚型聚苯并噁嗪基超疏水涂层的制备及其性能 [J]. 功能高分子学报,2019,32(1):90-95.

    ZHANG H, LU X, YAO H J, et al. Preparation and properties of superhydrophobic coatings based on cardanol polybenzoxazine [J]. Journal of Functional Polymers,2019,32(1):90-95.
    [15] ZHANG L, MAO J, WANG S, et al. Benzoxazine based high performance materials with low dielectric constant: A review [J]. Current Organic Chemistry,2019,23(7):809-822. doi: 10.2174/1385272823666190422130917
    [16] XU Q, YIN D, ZENG M, et al. Low dielectric benzoxazine resins: Synthesis and modification [J]. Polymeric Materials Science and Engineering,2017,33(1):165-172.
    [17] PATTHARASIRIWONG P, JUBSILP C, MORA P, et al. Dielectric and thermal behaviors of fluorine-containing dianhydride-modified polybenzoxazine: A molecular design flexibility [J]. Journal of Applied Polymer Science,2017,134(33):45204-45211. doi: 10.1002/app.45204
    [18] VELEZ-HERRERA P, DOYAMA K, ABE H, et al. Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain [J]. Macromolecules,2008,41(24):9704-9714. doi: 10.1021/ma801253a
    [19] CHEN J, ZENG M, FENG Z, et al. Design and preparation of benzoxazine resin with high-frequency low dielectric constants and ultralow dielectric losses [J]. ACS Applied Polymer Materials,2019,1(4):625-630. doi: 10.1021/acsapm.8b00083
    [20] SASI-KUMAR R, PADMANATHAN N, ALAGAR M. Design of hydrophobic polydimethylsiloxane and polybenzoxazine hybrids for interlayer low k dielectrics [J]. New Journal of Chemistry,2015,39(5):3995-4008. doi: 10.1039/C4NJ02188F
    [21] LIN C H, HUANG S J, WANG P J, et al. Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine [J]. Macromolecules,2012,45(18):7461-7466. doi: 10.1021/ma3009433
    [22] ZENG M, PANG T, CHEN J, et al. Facile preparation of the novel castor oil-based benzoxazine-urethane copolymer with improved high-frequency dielectric properties [J]. Journal of Materials Science: Materials in Electronics,2018,29(7):5391-5400. doi: 10.1007/s10854-017-8505-y
    [23] THIRUKUMARAN P, PARVEEN A S, SAROJADEVI M. Synthesis of eugenol-based polybenzoxazine-POSS nanocomposites for low dielectric applications [J]. Polymer Composites,2015,36(11):1973-1982. doi: 10.1002/pc.23107
    [24] SASI-KUMAR R, ALAGAR M. Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites [J]. RSC Advances,2015,5(42):33008-33015. doi: 10.1039/C5RA04328J
    [25] VENGATESAN M R, DEVARAJU S, DINAKARAN K, et al. SBA-15 filled polybenzoxazine nanocomposites for low-k dielectric applications [J]. Journal of Materials Chemistry,2012,22(15):7559-7566. doi: 10.1039/c2jm16566j
    [26] SELVARAJ V, JAYANTHI K P, LAKSHMIKANDHAN T, et al. Development of a polybenzoxazine/TSBA-15 composite from the renewable resource cardanol for low-k applications [J]. RSC Advances,2015,5(60):48898-48907. doi: 10.1039/C5RA07480K
    [27] Johannes Karl Fink. Reactive Polymers Fundamentals and Applications [M]. England: Rapra Technology Limited, 2013: 251-268.
    [28] LI X, GU Y. The co-curing process of a benzoxazine-cyanate system and the thermal properties of the copolymers [J]. Polymer Chemistry,2011,2(12):2778-2781. doi: 10.1039/c1py00379h
    [29] MA P, DAI C, JIANG S. Thioetherimide-modified cyanate ester resin with better molding performance for glass fiber reinforced composites [J]. Polymers,2019,11(9):1-10.
    [30] WANG X, JIN J, SONG M. Cyanate ester resin/graphene nanocomposite: Curing dynamics and network formation [J]. European Polymer Journal,2012,48(6):1034-1041. doi: 10.1016/j.eurpolymj.2012.03.012
    [31] YUAN L, LIANG G, GU A. The thermal and dielectric properties of high performance cyanate ester resins/microcapsules composites [J]. Polymer Degradation and Stability,2011,96(1):84-90. doi: 10.1016/j.polymdegradstab.2010.10.013
    [32] ZHAO L, YUAN L, LIANG G, et al. Novel tough and thermally stable cyanate ester resins with high flame retardancy, low dielectric loss and constant based on a phenolphthalein type polyarylether sulfone [J]. RSC Advances,2015,5(73):58989-59002. doi: 10.1039/C5RA10670B
    [33] TANG Y, YUAN L, LIANG G, et al. High performance low-k cyanate ester resins with a thermally stable cyclodextrin microsphere [J]. RSC Adv,2014,4(31):16136-16145. doi: 10.1039/C4RA00750F
    [34] XU M, CHEN S, LI X, et al. Fabrication of phthalonitrile-based copper-clad laminates and their application properties: Thermo-stability and dielectric properties [J]. Advanced Industrial and Engineering Polymer Research,2020,3(4):194-201. doi: 10.1016/j.aiepr.2020.10.004
    [35] ZHUO D, GU A, LIANG G, et al. Preparation and properties of hollow silica tubes/cyanate ester hybrids for high-frequency copper-clad laminates [J]. Journal of Materials Science,2010,46(6):1571-1580.
    [36] JIAO J, ZHAO L, XIA Y, et al. Toughening of cyanate resin with low dielectric constant by glycidyl polyhedral oligomeric silsesquioxane [J]. High Performance Polymers,2016,29(4):458-466.
    [37] WANG H, YUAN L, LIANG G, et al. Tough and thermally resistant cyanate ester resin with significantly reduced curing temperature and low dielectric loss based on developing an efficient graphene oxide/Mn ion metal-organic framework hybrid [J]. RSC Advances,2016,6(4):3290-3300. doi: 10.1039/C5RA21765B
    [38] GU X, ZHANG Z, YUAN L, et al. Developing high performance cyanate ester resin with significantly reduced postcuring temperature while improved toughness, rigidity, thermal and dielectric properties based on manganese-Schiff base hybridized graphene oxide [J]. Chemical Engineering Journal,2016,298:214-224. doi: 10.1016/j.cej.2016.04.031
    [39] RIDDLE B, BAKER-JARVIS J, KRUPKA J. Complex permittivity measurements of common plastics over variable temperatures [J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(3):727-733. doi: 10.1109/TMTT.2003.808730
    [40] HUANG X, JIANG P, TANAKA T. A review of dielectric polymer composites with high thermal conductivity [J]. IEEE Electrical Insulation Magazine,2011,27(4):8-16. doi: 10.1109/MEI.2011.5954064
    [41] HAHN T A. Thermal expansion of copper from 20 to 800 K-standard reference material 736 [J]. Journal of Applied Physics,1970,41(13):5096-5101. doi: 10.1063/1.1658614
    [42] XI Z, GHITA O R, EVANS K E. Effect of recyclate PTFE/GF laminate incorporation on the dielectric and mechanical properties of PTFE/GF composites using a novel manufacturing process [J]. Journal of Applied Polymer Science,2011,122(4):2467-2477. doi: 10.1002/app.34350
    [43] ZHANG J, CUI C Q, LIM T B, et al. Surface graft copolymerization enhanced lamination of poly(tetrafluoroethylene) film to copper and epoxy-based print circuit board [J]. Journal of Electronic Packaging,1999,121(4):291-296. doi: 10.1115/1.2793855
    [44] TZENG G S, CHEN H J, WANG Y Y, et al. The effects of roughening on teflon surfaces [J]. Surface and Coatings Technology,1997,89(1-2):108-113. doi: 10.1016/S0257-8972(96)02916-7
    [45] 何欣钟, 李荣, 高乾宏, 等. 低温等离子体接枝改性聚四氟乙烯薄膜表面无钯化学镀铜 [J]. 辐射研究与辐射工艺学报,2016,34(4):34-41.

    HE X Z, LI R, GAO Q H, et al. Low temperature plasma graft polymerization of acrylic acid on polytetrafluoroethylene film for Pd-free electroless copper deposition [J]. Journal of Radiation Research and Radiation Processing,2016,34(4):34-41.
    [46] VALERIO J K C, NAKAJIMA H, VASQUEZ M R. Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates [J]. Japanese Journal of Applied Physics,2019,58(SA):1-7.
    [47] ZHOU G, GOU X, JIN X, et al. Low fractal dimension modified drilling-hole wall for PTFE high-frequency board copper plating with plasma treatment [J]. Journal of Applied Polymer Science,2019,136(42):48052-48061. doi: 10.1002/app.48052
    [48] ZIMMERMANN-PTACEK J, MUGGLI M, WILDHACK S, et al. Thermal, dielectric, and mechanical properties of h-BN-filled PTFE composites [J]. Journal of Applied Polymer Science,2018,135(44):46859-46867. doi: 10.1002/app.46859
    [49] CHEN P, KOU K, ZHANG Y, et al. Investigation of the dielectric and thermal conductive properties of core-shell structured HGM@hBN/PTFE composites [J]. Materials Science and Engineering: B,2018,238-239:61-70. doi: 10.1016/j.mseb.2018.12.015
    [50] 兰中旭, 韦嘉, 俞燕蕾. 耐高温无色透明聚酰亚胺的研究进展 [J]. 功能高分子学报,2020,33(4):320-332.

    LAN Z X, WEI J, YU Y L. Recent progress in colorless and transparent polyimide with high thermal stability [J]. Journal of Functional Polymers,2020,33(4):320-332.
    [51] PROLONGO S G, CABANELAS J C, FINE T, et al. Poly(phenylene ether)/epoxy thermoset blends based on anionic polymerization of epoxy monomer [J]. Journal of Applied Polymer Science,2004,93(6):2678-2687. doi: 10.1002/app.20836
    [52] ZHAO S, ZHU R. Flexible Bimodal sensor for simultaneous and independent perceiving of pressure and temperature stimuli [J]. Advanced Materials Technologies,2017,2(11):1700183. doi: 10.1002/admt.201700183
    [53] ISHII J, YOKOYAMA N, HASEGAWA M. Solution-processable CF3-substituted ductile polyimides with low coefficients of thermal expansion as novel coating-type protective layers in flexible printed circuit boards [J]. Progress in Organic Coatings,2016,99:125-133. doi: 10.1016/j.porgcoat.2016.05.008
    [54] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics [J]. Nature,2013,499(7459):458-463. doi: 10.1038/nature12314
    [55] WANG X, DAI Y, WANG W, et al. Fluorographene with high fluorine/carbon ratio: A nanofiller for preparing low-k polyimide hybrid films [J]. ACS Applied Materials & Interfaces,2014,6(18):16182-16188.
    [56] YIN X, FENG Y, ZHAO Q, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant [J]. Journal of Materials Chemistry C,2018,6(24):6378-6384. doi: 10.1039/C8TC00998H
    [57] CHEN W, ZHOU Z, YANG T, et al. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety [J]. Reactive and Functional Polymers,2016,108:71-77. doi: 10.1016/j.reactfunctpolym.2016.04.011
    [58] BEI R, QIAN C, ZHANG Y, et al. Intrinsic low dielectric constant polyimides: Relationship between molecular structure and dielectric properties [J]. Journal of Materials Chemistry C,2017,5(48):12807-12815. doi: 10.1039/C7TC04220E
    [59] QIAN C, FAN Z G, ZHENG W W, et al. A facile strategy for non-fluorinated intrinsic low-k and low-loss dielectric polymers: Valid exploitation of secondary relaxation behaviors [J]. Chinese Journal of Polymer Science,2019,38(3):213-219.
    [60] SHI C, LIU S, LI Y, et al. Imparting low dielectric constant and high modulus to polyimides via synergy between coupled silsesquioxanes and crown ethers [J]. Composites Science and Technology,2017,142:117-123. doi: 10.1016/j.compscitech.2017.02.002
    [61] CHEN Z, ZHU D, TONG F, et al. Low dielectric constant polyimide hybrid films prepared by in situ blow-balloon method [J]. ACS Applied Polymer Materials,2019,1(8):2189-2196. doi: 10.1021/acsapm.9b00448
    [62] MA Y, XU L, HE Z, et al. Tunable dielectric and other properties in high-performance sandwich-type polyimide films achieved by adjusting the porous structure [J]. Journal of Materials Chemistry C,2019,7(24):7360-7370. doi: 10.1039/C9TC02017A
    [63] HAY A S. Poly(phenylene oxides)s and poly(arylene ether)s derived from 2, 6-diarylphenols [J]. Progress in Polymer Science,1999,24(1):45-80. doi: 10.1016/S0079-6700(98)00016-1
    [64] NUNOSHIGE J, AKAHOSHI H, SHIBASAKI Y, et al. Efficient oxidative coupling polymerization for synthesis of thermosetting poly(phenylene ether) copolymer with a low dielectric loss [J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(15):5278-5282. doi: 10.1002/pola.22768
    [65] NUNOSHIGE J, AKAHOSHI H, SHIBASAKI Y, et al. Low dielectric loss copolymer obtained from 2, 6-dimethylphenol and 2-allyl-6-methylphenol via Cu-catalyzed oxidative coupling polymerization [J]. Chemistry Letters,2007,36(2):238-239. doi: 10.1246/cl.2007.238
    [66] WANG Y, CHENG S, LI W, et al. Synthesis and properties of thermosetting modified polyphenylene ether [J]. Polymer Bulletin,2007,59(3):391-401. doi: 10.1007/s00289-007-0775-8
    [67] SHEN D, YUAN L, LIANG G, et al. Thermally resistant photocrosslinked damping poly(phenylene oxide)-fluorosilicone rubber films with broad and high effective damping temperatures [J]. Journal of Applied Polymer Science,2019,136(12):47231-47238. doi: 10.1002/app.47231
    [68] WANG Y, TAO Y, ZHOU J, et al. Biobased anethole-functionalized poly(phenylene oxides): New low dielectric materials with high Tg and good dimensional stability [J]. ACS Sustainable Chemistry & Engineering,2018,6(7):9277-9282.
    [69] CHEN W, YANG H, ZOU H, et al. Compatibilized the thermosetting blend of epoxy and redistributed low molecular weight poly(phenylene oxide) with triallylisocyanurate [J]. Journal of Applied Polymer Science,2016,133(20):43293-43298.
    [70] WENG L, ZHANG Y, ZHANG X, et al. Synthesis and properties of cyanate mixed resin systems modified by polyphenylene oxide for production of high-frequency copper clad laminates [J]. Journal of Materials Science: Materials in Electronics,2017,29(4):2831-2840.
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  565
  • HTML全文浏览量:  292
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 网络出版日期:  2021-04-01

目录

    /

    返回文章
    返回