高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯壳聚糖复合气凝胶的制备及光热性能

王星瑶 顾宇飞 王鹏飞 刘静

王星瑶, 顾宇飞, 王鹏飞, 等. 聚吡咯壳聚糖复合气凝胶的制备及光热性能[J]. 功能高分子学报,2022,35(2):196-202 doi: 10.14133/j.cnki.1008-9357.20210203001
引用本文: 王星瑶, 顾宇飞, 王鹏飞, 等. 聚吡咯壳聚糖复合气凝胶的制备及光热性能[J]. 功能高分子学报,2022,35(2):196-202 doi: 10.14133/j.cnki.1008-9357.20210203001
WANG Xingyao, GU Yufei, WANG Pengfei, LIU Jing. Preparation and Photothermal Properties of Polypyrrole Chitosan Composite Aerogels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210203001
Citation: WANG Xingyao, GU Yufei, WANG Pengfei, LIU Jing. Preparation and Photothermal Properties of Polypyrrole Chitosan Composite Aerogels[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210203001

聚吡咯壳聚糖复合气凝胶的制备及光热性能

doi: 10.14133/j.cnki.1008-9357.20210203001
基金项目: 国家自然科学基金青年基金(52003062);广西自然科学基金面上项目(2019 GXNSFAA245042);广西科技基地和人才专项(桂科AD19110072)
详细信息
    作者简介:

    王星瑶(1997—),女,学士,主要研究方向为光热转换材料。E-mail:1102411704@qq.com

    通讯作者:

    刘 静, E-mail:liu_jing0515@163.com

  • 中图分类号: R318.08

Preparation and Photothermal Properties of Polypyrrole Chitosan Composite Aerogels

  • 摘要: 以聚吡咯(PPy)作为高效宽谱太阳光吸收的光热转换材料,通过固-液冷冻干燥法制备聚吡咯壳聚糖复合气凝胶(PPyCS)应用于太阳能驱动水蒸发系统。通过控制气凝胶交联程度和聚吡咯聚合时间对PPyCS制备工艺进行系统性优化。结果表明,所得气凝胶具有高吸光率(97.83%)。在1 kW/m2光照强度下,复合气凝胶实现了水蒸发速率为3.1 kg/(m2·h)的高效太阳能水蒸发系统;通过对离子质量浓度为1 000 mg/L的模拟海水进行重复性测试,循环5次后,光热转换效率基本保持不变;对天然海水实现了高效水蒸发速率(1.129 kg/(m2·h)),处理后的水质达到世界卫生组织饮用水标准。

     

  • 图  1  (a)CS气凝胶的制备流程;(b)光热界面水蒸发系统示意图

    Figure  1.  (a)Preparation process of CS aerogel; (b)Schematic diagram of water evaporation system at photothermal interface

    图  2  CS气凝胶的形成机理

    Figure  2.  Formation mechanism of CS aerogel

    图  3  样品的(a)FT-IR光谱图和(b)紫外光谱图

    Figure  3.  (a) FT-IR spectra and (b) UV spectra of samples

    图  4  CS气凝胶及PPyCS复合气凝胶的SEM图

    Figure  4.  SEM images of CS aerogel and PPyCS composite aerogel

    a—CS aerogel with glutaraldehyde of 50 μL; b—CS aerogel with glutaraldehyde of 150 μL; (c) Local enlarged images of (a); (d) Local enlarged images of (b); (e) PPyCS composite aerogel; (f) Cross section of PPyCS composite aerogel

    图  5  PPyCS复合气凝胶蒸汽性能图

    a—PPyCS aerogel vapor containing glutaraldehyde 30 μL; b—PPyCS aerogel vapor containing glutaraldehyde 50 μL ; c, d—PPYCs composite aerogels with different glutaraldehyde volume

    Figure  5.  Steam performance properties of PPyCS composite aerogel

    图  6  PPyCS复合气凝胶脱盐稳定性测试

    Figure  6.  Desalination stability experiment of PPyCS composite aerogels

    图  7  PPyCS脱盐性能测试

    Figure  7.  Desalination performance experiment of PPyCS

  • [1] KHAN J, ARSALAN M H. Solar power technologies for sustainable electricity generation: A review [J]. Renewable and Sustainable Energy Reviews,2016,55:414-425.
    [2] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature,2015,517(7535):476-480. doi: 10.1038/nature14133
    [3] FURUBE A, HASHIMOTO S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication [J]. Npg Asia Materials,2017,9(12):e454. doi: 10.1038/am.2017.191
    [4] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications [J]. Nanoscale,2013,5(9):3601. doi: 10.1039/c3nr00476g
    [5] WANG L, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reduction agent of CO2 to fuels (CH4 and CH3OH) with enhanced photo-thermal catalytic performances [J]. Journal of Materials Chemistry A,2016,4(14):5314-5322. doi: 10.1039/C5TA10180H
    [6] WANG C L, ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion [J]. Chemical Society Reviews,2014,45(50):7188-7216.
    [7] DENG Z, MIAO L, LIU P, et al. Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure [J]. Nano Energy,2019,55:368-376. doi: 10.1016/j.nanoen.2018.11.002
    [8] SUN L, HAN J, LIU Z, et al. The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated collagenous chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: Exhaustive in vivo evaluations [J]. Journal of Photochemistry and Photobiology B:Biology,2019,197:111539. doi: 10.1016/j.jphotobiol.2019.111539
    [9] 高琦, 黄海龙, 韩卢, 等. PEI改性磁性壳聚糖微球的制备及其对布洛芬的吸附性能 [J]. 功能高分子学报,2020,33(2):165-171.

    GAO Q, HUANG H L, HAN L, et al. Preparation of PEI modified magnetic chitosan microspheres and their adsorption property for ibuprofen [J]. Journal of Functional Polymers,2020,33(2):165-171.
    [10] 査莉, 王璐瑶, 郑雅慧, 等. 纤维素/海藻酸钠复合气凝胶的表面功能化与仿生矿化 [J]. 功能高分子学报,2020,33(4):382-389.

    ZHA L, WANG L Y, ZHENG Y H, et al. Biomineralization and surface functionalization of cellulose/sodium alginate composite aerogels [J]. Journal of Functional Polymers,2020,33(4):382-389.
    [11] HOU Y, ZHANG L, CHEN Y, et al. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold [J]. Phys Chem Chem Phys,2014,16(8):3523-3528. doi: 10.1039/c3cp54497d
    [12] WANG C, WANG Y, SONG X, et al. A Facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation [J]. Advanced Sustainable Systems,2019,3(1):1800108. doi: 10.1002/adsu.201800108
    [13] ZHOU X Y, ZHAO F, GUO Y H, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484.
    [14] WANG X, LIU Q, WU S, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion [J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716
    [15] HUANG W, HU G Y, TIAN C, et al. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation [J]. Sustainable Energy and Fuels,2019,3:3000-3008.
    [16] LI X, LI J, LU J, et al. Enhancement of interfacial solar vapor generation by environmental energy [J]. Joule,2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004
    [17] LIU P F, MIAO L, DENG Z Y, et al. Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect [J]. Applied Energy,2019,241:652-659. doi: 10.1016/j.apenergy.2019.02.030
    [18] ZHOU J H, GU Y F, LIU P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019, 29(50): 1903255.
    [19] el KADIB A, BOUSMINA M. Chitosan bio-based organic-inorganic hybrid aerogel microspheres [J]. Chemistry: A European Journal,2012,18(27):8264-8277. doi: 10.1002/chem.201104006
  • 加载中
图(7)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  46
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-03
  • 录用日期:  2021-11-30
  • 网络出版日期:  2021-12-08

目录

    /

    返回文章
    返回