Preparation and Photothermal Properties of Polypyrrole Chitosan Composite Aerogels
-
摘要: 以聚吡咯(PPy)作为高效宽谱太阳光吸收的光热转换材料,通过固-液冷冻干燥法制备聚吡咯壳聚糖复合气凝胶(PPyCS)应用于太阳能驱动水蒸发系统。通过控制气凝胶交联程度和聚吡咯聚合时间对PPyCS制备工艺进行系统性优化。结果表明,所得气凝胶具有高吸光率(97.83%)。在1 kW/m2光照强度下,复合气凝胶实现了水蒸发速率为3.1 kg/(m2·h)的高效太阳能水蒸发系统;通过对离子质量浓度为1 000 mg/L的模拟海水进行重复性测试,循环5次后,光热转换效率基本保持不变;对天然海水实现了高效水蒸发速率(1.129 kg/(m2·h)),处理后的水质达到世界卫生组织饮用水标准。Abstract: Polypyrrole (PPy) is a photothermal conversion material with high efficiency and broad-spectrum absorption of sunlight. Polypyrrole chitosan (PPyCS) composite aerogel was prepared by freeze drying and applied to the solar water evaporation system. The preparation process of polypyrrole was optimized by controlling the crosslinking degree of aerogels and the polymerization time of polypyrrole. Results showed that the excellent photothermal conversion performance of PPy made the PPyCS composite aerogels with high absorbance (97.83%). Under the light intensity of 1 kW/m2, the crosslinking agent (glutaraldehyde) was 150 μL, and polypyrrole reacted for 3 h, the composite aerogels achieved the best value. The evaporation rate 2.6 kg/ (m2·h) and the photothermal conversion efficiency was 97.63%. Under the light intensity of 1 kW/m2, the composite aerogel had higher evaporation rate (1.129 kg/(m2·h)) for natural seawater. After the 5 repeated tests, the photothermal conversion efficiency of the composite aerogel basically remained the same for the simulated seawater desalinated with 1 000 mg/L concentration. The water quality after treatment reached World Health Organization (WHO) drinking water standard.
-
Key words:
- polypyrrole /
- chitosan aerogel /
- photothermal conversion /
- seawater desalination
-
图 4 CS气凝胶及PPyCS复合气凝胶的SEM图
Figure 4. SEM images of CS aerogel and PPyCS composite aerogel
a—CS aerogel with glutaraldehyde of 50 μL; b—CS aerogel with glutaraldehyde of 150 μL; (c) Local enlarged images of (a); (d) Local enlarged images of (b); (e) PPyCS composite aerogel; (f) Cross section of PPyCS composite aerogel
-
[1] KHAN J, ARSALAN M H. Solar power technologies for sustainable electricity generation: A review [J]. Renewable and Sustainable Energy Reviews,2016,55:414-425. [2] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature,2015,517(7535):476-480. doi: 10.1038/nature14133 [3] FURUBE A, HASHIMOTO S. Insight into plasmonic hot-electron transfer and plasmon molecular drive: New dimensions in energy conversion and nanofabrication [J]. Npg Asia Materials,2017,9(12):e454. doi: 10.1038/am.2017.191 [4] PAN X, YANG M Q, FU X, et al. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications [J]. Nanoscale,2013,5(9):3601. doi: 10.1039/c3nr00476g [5] WANG L, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reduction agent of CO2 to fuels (CH4 and CH3OH) with enhanced photo-thermal catalytic performances [J]. Journal of Materials Chemistry A,2016,4(14):5314-5322. doi: 10.1039/C5TA10180H [6] WANG C L, ASTRUC D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion [J]. Chemical Society Reviews,2014,45(50):7188-7216. [7] DENG Z, MIAO L, LIU P, et al. Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure [J]. Nano Energy,2019,55:368-376. doi: 10.1016/j.nanoen.2018.11.002 [8] SUN L, HAN J, LIU Z, et al. The facile fabrication of wound compatible anti-microbial nanoparticles encapsulated collagenous chitosan matrices for effective inhibition of poly-microbial infections and wound repairing in burn injury care: Exhaustive in vivo evaluations [J]. Journal of Photochemistry and Photobiology B:Biology,2019,197:111539. doi: 10.1016/j.jphotobiol.2019.111539 [9] 高琦, 黄海龙, 韩卢, 等. PEI改性磁性壳聚糖微球的制备及其对布洛芬的吸附性能 [J]. 功能高分子学报,2020,33(2):165-171.GAO Q, HUANG H L, HAN L, et al. Preparation of PEI modified magnetic chitosan microspheres and their adsorption property for ibuprofen [J]. Journal of Functional Polymers,2020,33(2):165-171. [10] 査莉, 王璐瑶, 郑雅慧, 等. 纤维素/海藻酸钠复合气凝胶的表面功能化与仿生矿化 [J]. 功能高分子学报,2020,33(4):382-389.ZHA L, WANG L Y, ZHENG Y H, et al. Biomineralization and surface functionalization of cellulose/sodium alginate composite aerogels [J]. Journal of Functional Polymers,2020,33(4):382-389. [11] HOU Y, ZHANG L, CHEN Y, et al. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold [J]. Phys Chem Chem Phys,2014,16(8):3523-3528. doi: 10.1039/c3cp54497d [12] WANG C, WANG Y, SONG X, et al. A Facile and general strategy to deposit polypyrrole on various substrates for efficient solar-driven evaporation [J]. Advanced Sustainable Systems,2019,3(1):1800108. doi: 10.1002/adsu.201800108 [13] ZHOU X Y, ZHAO F, GUO Y H, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science Advances, 2019, 5(6): eaaw5484. [14] WANG X, LIU Q, WU S, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion [J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716 [15] HUANG W, HU G Y, TIAN C, et al. Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation [J]. Sustainable Energy and Fuels,2019,3:3000-3008. [16] LI X, LI J, LU J, et al. Enhancement of interfacial solar vapor generation by environmental energy [J]. Joule,2018,2(7):1331-1338. doi: 10.1016/j.joule.2018.04.004 [17] LIU P F, MIAO L, DENG Z Y, et al. Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect [J]. Applied Energy,2019,241:652-659. doi: 10.1016/j.apenergy.2019.02.030 [18] ZHOU J H, GU Y F, LIU P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019, 29(50): 1903255. [19] el KADIB A, BOUSMINA M. Chitosan bio-based organic-inorganic hybrid aerogel microspheres [J]. Chemistry: A European Journal,2012,18(27):8264-8277. doi: 10.1002/chem.201104006 -