高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚吡咯/MnO2纸电极的制备及光热效应增强电容性能

康萌 王鹏飞 王蒙 吴强 柯晓玲 周建华

康萌, 王鹏飞, 王蒙, 吴强, 柯晓玲, 周建华. 聚吡咯/MnO2纸电极的制备及光热效应增强电容性能[J]. 功能高分子学报, 2021, 34(5): 490-496. doi: 10.14133/j.cnki.1008-9357.20210131001
引用本文: 康萌, 王鹏飞, 王蒙, 吴强, 柯晓玲, 周建华. 聚吡咯/MnO2纸电极的制备及光热效应增强电容性能[J]. 功能高分子学报, 2021, 34(5): 490-496. doi: 10.14133/j.cnki.1008-9357.20210131001
KANG Meng, WANG Pengfei, WANG Meng, WU Qiang, KE Xiaoling, ZHOU Jianhua. Preparation of Polypyrrole/MnO2 Paper Electrode and Its Photothermal Effect to Enhanced Capacitor Performance[J]. Journal of Functional Polymers, 2021, 34(5): 490-496. doi: 10.14133/j.cnki.1008-9357.20210131001
Citation: KANG Meng, WANG Pengfei, WANG Meng, WU Qiang, KE Xiaoling, ZHOU Jianhua. Preparation of Polypyrrole/MnO2 Paper Electrode and Its Photothermal Effect to Enhanced Capacitor Performance[J]. Journal of Functional Polymers, 2021, 34(5): 490-496. doi: 10.14133/j.cnki.1008-9357.20210131001

聚吡咯/MnO2纸电极的制备及光热效应增强电容性能

doi: 10.14133/j.cnki.1008-9357.20210131001
基金项目: 广西杰出青年基金(2019GXNSFFA245010);广西科技计划(桂科AD18281057)
详细信息
    作者简介:

    康萌:康 萌(1998—),女,硕士生,主要研究方向为响应性高分子复合材料。E-mail:clhgkangmeng@163.com

    通讯作者:

    周建华,E-mail:jianhuazhou@guet.edu.cn

  • 中图分类号: TB34

Preparation of Polypyrrole/MnO2 Paper Electrode and Its Photothermal Effect to Enhanced Capacitor Performance

  • 摘要: 通过湿化学法与低温界面聚合法在慢速滤纸上依次沉积二氧化锰(MnO2)与聚吡咯(PPy),制备出PPy/MnO2纸基复合材料。利用红外光谱、扫描电镜、循环伏安、恒电流充放电、交流阻抗等手段对该复合材料的结构和性能进行了表征。研究表明:PPy的沉积较好地保留了滤纸的多孔结构,并能覆盖MnO2颗粒,形成较大活性面积;其中MnO2/PPy-400单电极的比电容可达1 487.1 mF/cm2;在光强为1 kW/m2的模拟太阳光下,组装的对称型超级电容器的比电容是在无光照条件下的5倍,表现出优异的光热效应增强性能。

     

  • 图  1  (a) MnO2粉体的 XRD 衍射图谱;(b)样品的红外光谱

    Figure  1.  (a) XRD patterns of MnO2 powder; (b) FT-IR spectra of samples

    图  2  样品的SEM照片

    Figure  2.  SEM images of samples

    图  3  样品在干燥及润湿条件下的吸光率

    Figure  3.  Absorbance of samples in dry and moist situation

    图  4  MnO2/PPy纸电极的电化学性能

    Figure  4.  Electrochemical properties of MnO2/PPy paper electrodes

    (a) CV curves; (b) Charge-discharge curves at the constant current density of 1 mA/cm2; (c) Electrochemical impedance spectra

    图  5  (a) MnO2/PPy-400样品图及其光照(b)前(c)后10 min的红外照片

    Figure  5.  (a) Photo of MnO2/PPy-400, and its IR images under light of (b) t=0 and (c) t=10 min, respectively

    图  6  样品在有或无光照时的CV曲线

    T=25 °C; Light power: 1 kW/m2

    Figure  6.  CV curves of samples with or without light illumination

  • [1] SHU K W, WANG C Y, CHEN Z, et al. A Free-standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance [J]. Electrochimica Acta,2016,212:561-571. doi: 10.1016/j.electacta.2016.07.052
    [2] DONG L B, XU C J, LI Y, et al. Breathable and wearable energy storage based on highly flexible paper electrodes [J]. Advanced Materials,2016,28(42):9313-9319. doi: 10.1002/adma.201602541
    [3] 肖建伟, 肖谷雨. 酪蛋白热解制备多孔碳及其超级电容器性能 [J]. 功能高分子学报,2020,33(2):172-179.

    XIAO J W, XIAO G Y. Preparation of porous carbons pyrolyzed by casein and their supercapacitor performances [J]. Journal of Functional Polymers,2020,33(2):172-179.
    [4] 洪宇文, 单通, 丁奎, 等. 基于非平面稠环苝酰亚胺的全聚合物太阳能电池 [J]. 功能高分子学报,2020,33(3):253-261.

    HONG Y W, SHAN T, DING K, et al. All-polymer solar cells based on acceptors containing non-planar fused perylene diimide [J]. Journal of Functional Polymers,2020,33(3):253-261.
    [5] 李秀强. 基于低维碳材料的高效光热蒸汽转化研究[D]. 江苏: 南京大学, 2018.

    LI X Q. Study on high efficient solar steam based on low dimensional carbon materials[D]. Jiangsu: Nanjing University, 2018.
    [6] ZHOU J H, GU Y F, LIU P F, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions [J]. Advanced Functional Materials,2019,29(50):1903255. doi: 10.1002/adfm.201903255
    [7] YI F, REN H, DAI K, et al. Solar thermal-driven capacitance enhancement of supercapacitors [J]. Energy & Environmental Science,2018,11:2016-2024.
    [8] CHEN Z, LV T, YAO Y, et al. Three-dimensional seamless graphene/carbon nanotube hybrids for multifunctional energy storage [J]. Journal of Materials Chemistry A,2019,7:24792-24799. doi: 10.1039/C9TA10073C
    [9] WU Z S, REN W C, WANG D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J] ACS Nano, 2010, 4(10): 5835-5842.
    [10] PENG S, FAN L L, RAO W D, et al. Bacterial cellulose membranes coated by polypyrrole/copper oxide as flexible supercapacitor electrodes [J]. Journal of Materials Science,2017,52(4):1930-1942. doi: 10.1007/s10853-016-0482-7
    [11] MU P, BAI W, FAN Y K, et al. Conductive hollow kapok fiber-PPy monolithic aerogels with excellent mechanical robustness for efficient solar steam generation [J]. Journal of Materials Chemistry A,2019,7:9673-9679. doi: 10.1039/C8TA12243A
    [12] WANG Z, YAN Y T, SHEN X P, et al. A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement [J]. Journal of Materials Chemistry A,2019,7:20706-20712. doi: 10.1039/C9TA04914B
    [13] WANG W, LIU Q C, WU S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion [J]. Advanced Materials,2019,31(19):1807716. doi: 10.1002/adma.201807716
    [14] 王歌, 赵晓昱, 张瑾, 等. 不同晶型二氧化锰的可控制备条件研究 [J]. 无机盐工业,2017,49(8):14-18.

    WANG G, ZHAO X Y, ZHANG J, et al. Controllable hydrothermal crystallization of MnO2 with different crystal forms [J]. Inorganic Chemicals Industry,2017,49(8):14-18.
    [15] 周润萍. 对层状氧化锰结晶化合物应用前景的探讨 [J]. 化学工程与装备,2018(5):277-281.

    ZHOU R P. Discussion on the application prospect of layered manganese oxide crystalline compounds [J]. Chemical Engineering & Equipment,2018(5):277-281.
    [16] JALILI S, MOHARRAMZADEH G E, SCHOFIELD J. K1.33Mn8O16 as an electrocatalyst and a cathode [J]. Journal of Solid State Chemistry,2017,246:388-398. doi: 10.1016/j.jssc.2016.12.009
    [17] CHEN Y Y, CAI K F, LIU C C, et al. High-performance and breathable polypyrrole coated air-laid paper for flexible all-solid-state supercapacitors [J]. Advanced Energy Materials,2017,7(21):1701247. doi: 10.1002/aenm.201701247
    [18] 赵子鑫, 阿孜古丽·木尔赛李木, 阿比旦·阿布都乃则尔, 等. 以聚乙二醇-b-聚四乙烯基吡啶为模板制备聚联苯胺微/纳米颗粒及其电容特性 [J]. 功能高分子学报,2017,30(3):306-313.

    ZHAO Z X, MUSLIM Arzugul, ABDUNAZR Abida, et al. Preparation of polybenzidine micro/nano particles using PEO-b-P4VP as template and their capacitive properties [J]. Journal of Functional Polymers,2017,30(3):306-313.
    [19] HALL P, MIRZAEIAN M, FLETCHER S I, et al. Energy storage in electrochemical capacitors: Designing functional materials to improve performance [J]. Energy & Environmental Science,2010,3(9):1238-1251.
    [20] 杜双双, 何颖, 徐晨辉, 等. 碳布负载的MnO2-PANI复合材料的控制合成及其不对称超级电容器 [J]. 功能高分子学报,2015,28(4):353-359.

    DU S S, HE Y, XU C H, et al. Controllable synthesis of MnO2-PANI composite on carbon cloth and its asymmetric supercapacitor [J]. Journal of Functional Polymers,2015,28(4):353-359.
    [21] YANG P H, MAI W J. Flexible solid-state electrochemical supercapacitors [J]. Nano Energy,2014,8:274-290. doi: 10.1016/j.nanoen.2014.05.022
  • 加载中
图(6)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  188
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回