高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

POSS封端的聚氧化乙烯遥爪型聚合物的合成及形状记忆性能

李蕾 曹玉芹 常鹏飞 郑思珣

李蕾, 曹玉芹, 常鹏飞, 郑思珣. POSS封端的聚氧化乙烯遥爪型聚合物的合成及形状记忆性能[J]. 功能高分子学报, 2021, 34(5): 444-451. doi: 10.14133/j.cnki.1008-9357.20210128001
引用本文: 李蕾, 曹玉芹, 常鹏飞, 郑思珣. POSS封端的聚氧化乙烯遥爪型聚合物的合成及形状记忆性能[J]. 功能高分子学报, 2021, 34(5): 444-451. doi: 10.14133/j.cnki.1008-9357.20210128001
LI Lei, CAO Yuqin, CHANG Pengfei, ZHENG Sixun. Synthesis and Shape Memory Properties of POSS-Capped Poly(ethylene oxide) Telechelics[J]. Journal of Functional Polymers, 2021, 34(5): 444-451. doi: 10.14133/j.cnki.1008-9357.20210128001
Citation: LI Lei, CAO Yuqin, CHANG Pengfei, ZHENG Sixun. Synthesis and Shape Memory Properties of POSS-Capped Poly(ethylene oxide) Telechelics[J]. Journal of Functional Polymers, 2021, 34(5): 444-451. doi: 10.14133/j.cnki.1008-9357.20210128001

POSS封端的聚氧化乙烯遥爪型聚合物的合成及形状记忆性能

doi: 10.14133/j.cnki.1008-9357.20210128001
基金项目: 国家自然科学基金(21774078,51973113,21274091)
详细信息
    作者简介:

    李蕾:李 蕾(1983—),女,讲师,主要研究方向为含POSS的纳米复合材料。E-mail:lli_sjtu@163.com

    通讯作者:

    郑思珣,E-mail:szheng@sjtu.edu.cn

  • 中图分类号: O63

Synthesis and Shape Memory Properties of POSS-Capped Poly(ethylene oxide) Telechelics

  • 摘要: 通过点击化学反应合成了多面体齐聚倍半硅氧烷(POSS)封端的聚氧化乙烯(PEO)遥爪型聚合物。采用透射电镜、旋转流变仪及差示扫描量热仪对聚合物的形态结构及热力学性能进行了表征。由于POSS之间存在强相互作用,使其能够在PEO基体中聚集形成纳米微区。POSS微区作为物理交联点,赋予聚合物优异的热致形状记忆性能。POSS含量越高,形状恢复速率越快。此外,物理交联网络的形成和PEO的亲水性使聚合物在水中溶胀形成水凝胶。该水凝胶具有较高的溶胀率,且表现出良好的形状记忆性能。

     

  • 图  1  POSS-PEOnk-POSS的合成路线

    Figure  1.  Synthesis route of POSS-PEOnk-POSS

    图  2  (a)POSS-PEOnk-POSS 、炔丙基封端的PEO及POSS-N3的核磁共振氢谱;(b) POSS-PEOnk-POSS的TGA曲线

    Figure  2.  (a) 1H-NMR spectra of POSS-PEOnk-POSS, alkynyl-terminated PEO and POSS-N3; (b) TGA curves of POSS-PEOnk-POSS

    图  3  (a)POSS-PEO4k-POSS和(b)POSS-PEO8k-POSS的透射电镜照片

    Figure  3.  TEM images of (a)POSS-PEO4k-POSS and (b)POSS-PEO8k-POSS

    图  4  POSS-PEOnk-POSS的储能模量和损耗模量随频率变化的曲线

    Figure  4.  Storage modulus and loss modulus of POSS-PEOnk-POSS as a function of frequency

    图  5  POSS-PEOnk-POSS和PEOnk的DSC曲线

    Figure  5.  DSC curves of POSS-PEOnk-POSS and PEOnk

    图  6  (a)POSS-PEO4k-POSS的形状记忆过程;(b) POSS-PEOnk-POSS的形状记忆示意图

    Figure  6.  (a)Shape memory process of POSS-PEO4k-POSS;(b)Shape memory diagram for POSS-PEOnk-POSS

    图  7  POSS-PEOnk-POSS在水中的溶胀率曲线(插图为POSS-PEO6k-POSS在(左)溶胀前和(右)溶胀24 h后的照片)

    Figure  7.  Swelling ratio curve of POSS-PEOnk-POSS in water (Inset images are photos of POSS-PEO6k-POSS (left) before and (right) after swelling for 24 h)

    图  8  POSS-PEOnk-POSS水凝胶的储能模量和损耗模量随频率变化的曲线

    Figure  8.  Storage and loss moduli of POSS-PEOnk-POSS hydrogels as a function of frequency

    图  9  POSS-PEO6k-POSS水凝胶(a)从永久形状转变为临时形状以及(b)在水中的形状记忆过程;(c)水凝胶的形状恢复示意图

    Figure  9.  (a) Process from permanent shape to temporary shape and (b) shape memory process in water of the POSS-PEO6k-POSS hydrogel; (c)Proposed mechanism of shape memory for POSS-PEOnk-POSS hydrogels

    表  1  POSS-PEOnk-POSS的组成及结晶参数

    Table  1.   Composition and crystalline parameters of POSS-PEOnk-POSS

    Samplew(Residues)/%w(POSS) /%Tm/°CTc/°CΔH /(J·g−1)Crystallinity
    POSS-PEO2k-POSS26.8753.52
    POSS-PEO4k-POSS19.2738.3930.78−23.8036.470.19
    POSS-PEO6k-POSS11.1222.1541.3016.9464.350.34
    POSS-PEO8k-POSS9.6719.2645.4214.4277.340.41
    POSS-PEO10k-POSS8.0316.0044.6620.7279.160.42
    下载: 导出CSV
  • [1] TEW G T, DELONG N S, AGRAWAL S K, et al. New properties from PLA-PEO-PLA hydrogels [J]. Soft Matter,2005,1 (4):253-258. doi: 10.1039/b509800a
    [2] OH J K, DRUMRIGHT R, SIEGWART D J, et al. The development of microgels/nanogels for drug delivery applications [J]. Progress Polymer Science,2008,33 (4):448-477. doi: 10.1016/j.progpolymsci.2008.01.002
    [3] EMAMI S H, SALOVEY R, HOGEN-ESCH T E. Peroxide-mediated crosslinking of poly(ethylene oxide) [J]. Journal of Polymer Science Part A: Polymer Chemistry,2002,40(17):3021-3026. doi: 10.1002/pola.10367
    [4] MABESOONE M F J, GOPEZ J D, PAULUS I E, et al. Tunable biohybrid hydrogels from coacervation of hyaluronic acid and PEO-based block copolymers [J]. Journal of Polymer Science Part A Polymer Chemistry,2020,58(9):1276-1287.
    [5] TEIXEIRA R S P, CORREA R J, BELVINO A, et al. UV irradiation-induced crosslinking of aqueous solution of poly(ethylene oxide) with benzophenone as initiator teixeira [J]. Journal of Applied Polymer Science,2013,134(4):2458-2467.
    [6] YU L, ZHANG Z, DING J. In vitro degradation and protein release of transparent and opaque physical hydrogels of block copolymers at body temperature [J]. Macromolar Research,2012,20(3):234-243. doi: 10.1007/s13233-012-0049-7
    [7] QUAH S P, SMITH A J, PRESTON A N, et al. Large-area alginate/PPO-PEO-PPO hydrogels with thermoreversible rheology at physiological temperatures [J]. Polymer,2018,135:171-177. doi: 10.1016/j.polymer.2017.12.003
    [8] AGRAWAL S, SANABRIA-DELONG N, JEMIAN P R, et al. Micro- to nanoscale structure of biocompatible PLA-PEO-PLA hydrogels [J]. Langmuir,2007,23 (9):5039-5044. doi: 10.1021/la063390x
    [9] PARK M R, SEO B B, SONG S C. Dual ionic interaction system based on polyelectrolyte complex and ionic, injectable, and thermosensitive hydrogel for sustained release of human growth hormone [J]. Biomaterials,2013,34 (4):1327-1336. doi: 10.1016/j.biomaterials.2012.10.033
    [10] LI P, ZHANG J, DONG C. Photosensitive poly(o-nitrobenzyloxycarbonyl-L-lysine)-b-PEO polypeptide copolymers: Synthesis, multiple self-assembly behaviors, and the photo/pH-thermo-sensitive hydrogels [J]. Polymer Chemisrty,2017,8(45):7033-7043. doi: 10.1039/C7PY01574G
    [11] LI J, LI X. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly(ε-caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property [J]. Journal of Biomedical Matrerials Research Part A,2008,86A(4):1055-1061. doi: 10.1002/jbm.a.31710
    [12] JEONG B, BAE Y H, KIM S W. Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions [J]. Macromolecules,1999,32 (21):7064-7068. doi: 10.1021/ma9908999
    [13] LEE D S, SHIM M S, KIM S W, et al. Novel Thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution [J]. Macromolecular Rapid Communications,2001,22(8):587-592. doi: 10.1002/1521-3927(20010501)22:8<587::AID-MARC587>3.0.CO;2-8
    [14] LI G, WANG L, NI H, et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review [J]. Journal of Inorganic and Organometallic Polymers,2001,11(3):123-154. doi: 10.1023/A:1015287910502
    [15] SCHWAB J J, LICHTENHAN J D. Polyhedral oligomeric silsesquioxane (POSS)-based polymers [J]. Applied Organometallic Chemistry,1998,12(10-11):707-713. doi: 10.1002/(SICI)1099-0739(199810/11)12:10/11<707::AID-AOC776>3.0.CO;2-1
    [16] WRIGHT M E, PETTEYS B J, GUENTHNER A J, et al. Chemical modification of fluorinated polyimides: New thermally curing hybrid polymers with POSS [J]. Macromolecules,2006,39(14):4710-4718. doi: 10.1021/ma060372d
    [17] CAO Y, XU S, LI L, et al. Physically cross-linked networks of POSS-capped poly(acrylate amide)s: Synthesis, morphologies, and shape memory behavior [J]. Journal of Polymer Science Part B Polymer Physics,2017,55(7):587-600. doi: 10.1002/polb.24303
    [18] WANG L, ZHANG C, ZHENG S. Organic-inorganic poly(hydroxyether of bisphenol A) copolymers with double-decker silsesquioxane in the main chains [J]. Journal of Materials Chemistry,2011,21 (48):19344-19352. doi: 10.1039/c1jm13596a
    [19] WEI K, WANG L, ZHENG S. Organic-inorganic polyurethanes with 3, 13-dihydroxypropyloctaphenyl double-decker silsesquioxane chain extender [J]. Polymer Chemistry,2013,4 (5):1491-1501. doi: 10.1039/C2PY20930F
    [20] CHOI J, HARCUP J, YEE A F, et al. Organic/inorganic hybrid composites from cubic silsesquioxanes [J]. Journal of the American Chemical Society,2001,123 (46):11420-11429. doi: 10.1021/ja010720l
    [21] NEUMANN D, FISHER M, TRAN L,et al. Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane [J]. Journal of the American Chemical Society,2002,124(47):13998.
    [22] ZENG K, WANG L, ZHENG S. Rapid deswelling and reswelling response of poly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) amphiphilic telechelics [J]. The Journal of Physical Chemistry B,2009,113(35):11831-11840. doi: 10.1021/jp9043623
    [23] WANG L, ZENG K, ZHENG S. Hepta(3, 3, 3-trifluoropropyl) polyhedral oligomeric silsesquioxane-capped poly(N-isopropylacrylamide) telechelics: Synthesis and behavior of physical hydrogels [J]. ACS Appllied Materials & Interfaces,,2011,3(3):898-909.
    [24] LEE W, NI S, DENG J, et al. Telechelic poly(ethylene glycol)-POSS amphiphiles at the air/water interface [J]. Macromolecules,2007,40 (3):682-688. doi: 10.1021/ma0618171
    [25] LI L, ZHANG C, ZHENG S. Synthesis of POSS-terminated polycyclooctadiene telechelics via ring-opening metathesis polymerization [J]. Journal of Polymer Science Part A: Polymer Chemistry,2017,55 (2):223-233. doi: 10.1002/pola.28360
    [26] ZHAO B, MEI H, ZHENG S. Polyethylene telechelics with POSS termini: Synthesis, morphologies and shape memory properties [J]. Polymer Chemistry,2020,11(36):5819-5832. doi: 10.1039/D0PY01120G
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  49
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回