高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超支化聚硫醚构建非水相生物黏合剂

张一帆 柏广行 李小杰 刘晓亚

张一帆, 柏广行, 李小杰, 刘晓亚. 基于超支化聚硫醚构建非水相生物黏合剂[J]. 功能高分子学报, 2021, 34(4): 387-393. doi: 10.14133/j.cnki.1008-9357.20210127001
引用本文: 张一帆, 柏广行, 李小杰, 刘晓亚. 基于超支化聚硫醚构建非水相生物黏合剂[J]. 功能高分子学报, 2021, 34(4): 387-393. doi: 10.14133/j.cnki.1008-9357.20210127001
ZHANG Yifan, BAI Guanghang, LI Xiaojie, LIU Xiaoya. Non-Aqueous Bioadhesive Based on Hyperbranched Polythioether[J]. Journal of Functional Polymers, 2021, 34(4): 387-393. doi: 10.14133/j.cnki.1008-9357.20210127001
Citation: ZHANG Yifan, BAI Guanghang, LI Xiaojie, LIU Xiaoya. Non-Aqueous Bioadhesive Based on Hyperbranched Polythioether[J]. Journal of Functional Polymers, 2021, 34(4): 387-393. doi: 10.14133/j.cnki.1008-9357.20210127001

基于超支化聚硫醚构建非水相生物黏合剂

doi: 10.14133/j.cnki.1008-9357.20210127001
基金项目: 国家自然科学基金(21504032)
详细信息
    作者简介:

    张一帆(1995—),男,河南新乡人,博士生,从事超支化聚合物合成和生物材料等研究。E-mail:7170610016@stu.jiangnan.edu.cn

    通讯作者:

    刘晓亚,E-mail:lxy@jiangnan.edu.cn

  • 中图分类号: O633.3

Non-Aqueous Bioadhesive Based on Hyperbranched Polythioether

  • 摘要: 以2-(丙烯酰氧基)乙基甲基丙烯酸酯为AA'单体,三羟甲基丙烷三(3-巯基丙酸酯)为B3单体,通过硫醇-(甲基)丙烯酸酯迈克尔加成聚合反应,制备了富含硫醇基团、室温为液态的超支化聚硫醚(HBP)。将HBP与聚乙二醇二丙烯酸酯(PEGDA)混合制备了黏合剂。利用小瓶倾斜法、流变测试、拉伸搭接剪切测试、溶胀-降解测试和体外细胞毒性测试等研究了不同PEGDA添加量对黏合剂性能的影响。结果表明:这种非水相生物黏合剂能在水环境中使用,对猪皮的黏合强度最高可达43 kPa,且具有优异的细胞相容性。

     

  • 图  1  基于超支化聚硫醚的非水相黏合剂的制备示意图

    Figure  1.  Schematic illustration of the design of the hyperbranched polymer based non-aqueous adhesive

    图  2  HBP的(a)合成示意图、(b)核磁共振氢谱和(c)频率相关的流变曲线和剪切黏度曲线(25° C)

    Figure  2.  (a) Synthetic route and (b) 1H-NMR spectrum of HBP; (c)Frequency dependent-modulus and shear viscosity of HBP at 25 °C

    图  3  蘸有HBP的玻璃棒在水中黏结猪皮的数码照片

    Figure  3.  Digital photographs of a glass rod dipped in HBP bonded to porcine skin under water

    图  4  n(C=C)/n(SH)对黏合剂的固化时间及其固化后弹性模量的影响

    Figure  4.  Curing time and elastic modulus of HBP-x as a function of n(C=C)/n(SH)

    图  5  黏合剂在水环境下对猪皮的黏合强度

    Figure  5.  Underwater adhesive strength of the HBP-adhesive to porcine skin

    图  6  HBP-x在PBS缓冲液中(37 °C)的(a)溶胀曲线和(b)降解曲线

    Figure  6.  (a) Swelling profile and (b) degradation profile of HBP-x in PBS solution at 37 °C

    图  7  黏合剂浸提液培养L929细胞的相对细胞活力

    Figure  7.  Relative cell viability of L929 cell cultured by the extract of HBP-adhesive

    图  8  HBP-x表面培养的L929细胞于24 h后的荧光共焦照片

    Figure  8.  Live staining fluoresence confocal images of L929 cells present on the cured HBP-x after 24 h

    表  1  HBP的结构参数

    Table  1.   Structure parameter of HBP

    SampleMnMw/Mn Mwα Tg /°CViscosity/(Pa·s)−SH content/(mmol·g−1
    HBP4.9×1031.862.87×1030.408−4836.71.56
    Mn, Mw/Mn: Detected by GPC; Mw: Detected by the light scattering instrument; α: Mark-Houwink-Sakurada index; −SH Content: Thiol content of HBP calculated through 1H-NMR spectrum
    下载: 导出CSV
  • [1] ZHU W, CHUAH Y J, WANG D A. Bioadhesives for internal medical applications: a review [J]. Acta Biomaterialia,2018,74:1-16. doi: 10.1016/j.actbio.2018.04.034
    [2] 朱祺, 雷昆, 郑震, 等. 可降解聚氨酯骨胶黏剂的研究 [J]. 功能高分子学报,2020,33(2):194-199.

    ZHU Q, LEI K, ZHENG Z, et al. Research on degradable polyurethane bone adhesive [J]. Journal of Functional Polymers,2020,33(2):194-199.
    [3] RAJA P R. Cyanoacrylate adhesives: A critical review [J]. Reviews of Adhesion and Adhesives,2016,4(4):398-416. doi: 10.7569/RAA.2016.097315
    [4] SIERRA D H, EBERHARD A W, LEMONS J E. Failure characteristics of multiple-component fibrin-based adhesives [J]. Journal of Biomedical Materials Research,2002,59(1):1-11. doi: 10.1002/jbm.1210
    [5] GHOBRIL C, GRINSTAFF M W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial [J]. Chemical Society Reviews,2015,44:1820-1835. doi: 10.1039/C4CS00332B
    [6] THI H T T, LEE Y, THI P L, et al. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications [J]. Journal of Industrial and Engineering Chemistry,2019,78:34-52. doi: 10.1016/j.jiec.2019.05.026
    [7] ZHANG W, WANG R, SUN Z, et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications [J]. Chemical Society Reviews,2020,49(2):433-464. doi: 10.1039/C9CS00285E
    [8] HOFMAN A H, van HEES I A, YANG J, et al. Bioinspired underwater adhesives by using the supramolecular toolbox [J]. Advanced Materials,2018,30(19):1704640.
    [9] TABOADA G M, YANG K S, PEREIRA M J N, et al. Overcoming the translational barriers of tissue adhesives [J]. Nature Reviews Materials,2020,5(4):310-329. doi: 10.1038/s41578-019-0171-7
    [10] NARAYANAN A, KAUR S, PENG C, et al. Viscosity attunes the adhesion of bioinspired low modulus polyester adhesive sealants to wet tissues [J]. Biomacromolecules,2019,20(7):2577-2586. doi: 10.1021/acs.biomac.9b00383
    [11] XU Y, LIU Q, NARAYANAN A, et al. Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion [J]. Advanced Materials Interfaces,2017,4(22):1700506. doi: 10.1002/admi.201700506
    [12] LANG N, PEREIRA M J, LEE Y, et al. A blood-resistant surgical glue for minimally invasive repair of vessels and heart defects [J]. Science Translational Medicine,2014,6(218):218ra6. doi: 10.1126/scitranslmed.3006557
    [13] GRANSKOG V, ANDREN O C J, CAI Y, et al. ́ Linear dendritic block copolymers as promising biomaterials for the manufacturing of soft tissue adhesive patches using visible light initiated thiol-ene coupling chemistry [J]. Advanced Functional Materials,2015,25(42):6596-6605. doi: 10.1002/adfm.201503235
    [14] CUI C, FAN C, WU Y, et al. Water-triggered hyperbranched polymer universal adhesives: From strong underwater adhesion to rapid sealing hemostasis [J]. Advanced Materials,2019,31(49):1905761. doi: 10.1002/adma.201905761
    [15] 朱钦富. 超支化聚硫醚的制备及应用研究[D]. 江苏无锡: 江南大学, 2019.

    ZHU Q F. The preparation and application of hyperbranched polythioether[D]. Wuxi, Jiangsu: Jiangnan University, 2019.
    [16] CHAN J W, HOYLE C E, LOWE A B, et al. Nucleophile-initiated thiol-Michael reactions: Effect of organocatalyst, thiol, and ene [J]. Macromolecules,2010,43(15):6381-6388. doi: 10.1021/ma101069c
    [17] ZHANG Y, LI X, ZHU Q, et al. Photocurable hyperbranched polymer medical glue for water-resistant bonding [J]. Biomacromolecules,2021,21(12):5222-5232.
    [18] ZHENG Y, LI S, WENG Z, et al. Hyperbranched polymers: Advances from synthesis to applications [J]. Chemical Society Reviews,2015,44(12):4091-4130. doi: 10.1039/C4CS00528G
    [19] 高翔, 罗静, 钱佳怡, 等. 聚乙二醇型超支化聚酯胺的制备及表征 [J]. 功能高分子学报,2020,33(2):187-193.

    GAO X, LUO J, QIAN J Y, et al. Preparation and characterization of hyperbranched poly(amino-ester) with poly(ethylene glycol) [J]. Journal of Functional Polymers,2020,33(2):187-193.
    [20] NAIR D P, PODGORSKI M, CHATANI S, et al. The thiol-Michael addition click reaction: A powerful and widely used tool in materials chemistry[J]. Chemical of Materials, 2014, 26(1): 724-744.
    [21] VAKALOPOULOS K A, WU Z, KROESE L, et al. Mechanical strength and rheological properties of tissue adhesives with regard to colorectal anastomosis: An ex vivo study [J]. Annals of Surgery,2014,261(2):323-331.
    [22] SARAF H, RAMESH K T, LENNON A M, et al. Mechanical properties of soft human tissues under dynamic loading [J]. Journal of Biomechanics,2007,40(9):1960-1967. doi: 10.1016/j.jbiomech.2006.09.021
    [23] AWAJA F, GILBERT M, KELLY G, et al. Adhesion of polymers [J]. Progress in Polymer Science,2009,34(9):948-968. doi: 10.1016/j.progpolymsci.2009.04.007
    [24] DUFFY C, ZETTERLUND P, ALDABBAGH F. Radical polymerization of alkyl 2-cyanoacrylates [J]. Molecules,2018,23(2):465. doi: 10.3390/molecules23020465
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  303
  • HTML全文浏览量:  205
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-27
  • 网络出版日期:  2021-04-08
  • 刊出日期:  2021-07-08

目录

    /

    返回文章
    返回