高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气液界面法合成芘基二维聚合物薄膜

韩向丽 关静 陈乐 赵培 谭伟强 郑治坤

韩向丽, 关静, 陈乐, 赵培, 谭伟强, 郑治坤. 气液界面法合成芘基二维聚合物薄膜[J]. 功能高分子学报, 2021, 34(5): 476-482. doi: 10.14133/j.cnki.1008-9357.20210125001
引用本文: 韩向丽, 关静, 陈乐, 赵培, 谭伟强, 郑治坤. 气液界面法合成芘基二维聚合物薄膜[J]. 功能高分子学报, 2021, 34(5): 476-482. doi: 10.14133/j.cnki.1008-9357.20210125001
HAN Xiangli, GUAN Jing, CHEN Le, ZHAO Pei, TAN Weiqiang, ZHENG Zhikun. Synthesis of Pyrene-Based Two-Dimensional Polymer Film by Gas-Liquid Interface Strategy[J]. Journal of Functional Polymers, 2021, 34(5): 476-482. doi: 10.14133/j.cnki.1008-9357.20210125001
Citation: HAN Xiangli, GUAN Jing, CHEN Le, ZHAO Pei, TAN Weiqiang, ZHENG Zhikun. Synthesis of Pyrene-Based Two-Dimensional Polymer Film by Gas-Liquid Interface Strategy[J]. Journal of Functional Polymers, 2021, 34(5): 476-482. doi: 10.14133/j.cnki.1008-9357.20210125001

气液界面法合成芘基二维聚合物薄膜

doi: 10.14133/j.cnki.1008-9357.20210125001
基金项目: 国家自然科学基金面上项目(51873236);国际(地区)合作与交流项目(中德)(52061135103)
详细信息
    作者简介:

    韩向丽(1995—),女,硕士生,主要研究方向为二维COFs材料的合成与应用。E-mail:xianglihan@126.com

    通讯作者:

    谭伟强,E-mail:tanweiqiang@qut.edu.cn

  • 中图分类号: O63

Synthesis of Pyrene-Based Two-Dimensional Polymer Film by Gas-Liquid Interface Strategy

  • 摘要: 以1,3,6,8-四(对胺基苯基)芘为构筑单元,通过席夫碱缩合反应,利用表面活性剂单分子层辅助的界面聚合法制备了芘基二维聚合物薄膜。通过扫描电子显微镜、原子力显微镜、透射电子显微镜、X射线衍射、荧光光谱、傅里叶变换红外光谱和拉曼光谱考察了薄膜形貌、结构、结晶性和荧光强度等。结果表明:薄膜厚度约70 nm,可通过单体浓度进行调控;表面活性剂单分子层的限域作用促进了薄膜的结晶性,而分子内氢键使其具有荧光双发射效应。

     

  • 图  1  Py-DH薄膜的合成

    Figure  1.  Synthesis of Py-DH film

    图  2  Py-DH薄膜的SEM照片

    Figure  2.  SEM images of Py-DH film

    a, b, c—SHS, SDS and SDBS as surfactant; d, e, f— 0.1, 0.5 mol/L and 1 mol/L CF3SO3H; g, h, i— CF3SO3H, HCl, HAc as catalyst

    图  3  Py-DH薄膜的(a)红外和(b)拉曼光谱图

    Figure  3.  (a) FT-IR spectra and (b) Raman spectra of Py-DH film

    图  4  Py-DH薄膜的SEM照片

    Figure  4.  SEM images of Py-DH film

    a, b—Water phase side; c—Air phase side; d—Vertical

    图  5  Py-DH薄膜的(a,b)TEM图和(c)AFM图

    Figure  5.  (a,b) TEM and (c) AFM images of Py-DH film

    图  6  Py-DH薄膜XRD图

    Figure  6.  XRD pattern of Py-DH film

    图  7  Py-DH薄膜和PyTTA的(a)荧光发射图及(b)双发射原理图

    Figure  7.  (a) Fluorescence spectra and (b) illustration of dual emission of Py-DH film and PyTTA

  • [1] NOVOSELOV K S, GEIM A K, MOROZOF S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [2] STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors [J]. Nano Letters,2008,8(10):3498-3502. doi: 10.1021/nl802558y
    [3] DENG D, NOVOSELOV K S, FU Q, et al. Catalysis with two-dimensional materials and their heterostructures [J]. Nature Nanotechnology,2016,11(3):218-230. doi: 10.1038/nnano.2015.340
    [4] BONACCORSO F, COLOMBO L, YU G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J]. Science,2015,347(6217):41-50.
    [5] MENDOZA-SÁNCHEZ B, GOGOTSI Y. Synthesis of two-dimensional materials for capacitive energy storage [J]. Advanced Materials,2016,28(29):6104-6135. doi: 10.1002/adma.201506133
    [6] 康佳玲, 王红星, 庄小东, 等. sp2碳连接的二维聚合物 [J]. 功能高分子学报,2021,34(1):5-25.

    KANG J L, WANG H X, ZHUANG X D, et al. Two-dimensional polymers based on sp2-hybridized-carbon connections [J]. Journal of Functional Polymers,2021,34(1):5-25.
    [7] LI Y, DUAN Q, GAO B, et al. Construction of two-dimensional porphyrin-based fully conjugated microporous polymers as highly efficient photocatalysts [J]. Journal of Photochemistry and Photobiology A: Chemistry A,2018,405(356):370-378.
    [8] KIM K, AHN H, PARK M J. Highly catalytic Pt nanoparticles grown in two-dimensional conducting polymers at the air-water interface [J]. ACS Applied Materials & Interfaces,2017,9(36):30278-30282.
    [9] TANG Z, CHEN H, ZHANG Y, et al. Functional two-dimensional coordination polymer exhibiting luminescence detection of nitroaromatics [J]. Crystal Growth & Design,2019,19(2):1172-1182.
    [10] SU S, SUN Q, WANG L, et al. Two-dimensional nanomaterials for biosensing applications [J]. Trends in Analytical Chemistry,2019,119:115610-115623. doi: 10.1016/j.trac.2019.07.021
    [11] LIU Z, SONG M, ZHU Y, et al. Wafer-scale ultrathin two-dimensional conjugated microporous polymers: Preparation and application in heterostructure devices [J]. ACS Applied Materials & Interfaces,2018,10(4):4010-4017.
    [12] DING Y, CHEN Y P, ZHANG X, et al. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent [J]. Journal of the American Chemical Society,2017,139(27):9136-9139. doi: 10.1021/jacs.7b04829
    [13] GAO X, ZHU Y, YI D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy [J]. Science Advances,2018,4(7):1-8.
    [14] LIU J J, XU Y X, ZAN W, et al. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile [J]. Journal of the American Chemical Society,2017,139(34):11666-11669. doi: 10.1021/jacs.7b05025
    [15] NURAJE N, SU K, YANG N L, et al. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers [J]. ACS Nano,2008,2(3):502-506. doi: 10.1021/nn7001536
    [16] 谷志刚. 液相外延生长法层层组装金属-有机框架薄膜 [J]. 功能高分子学报,2019,32(5):533-540.

    GU Z G. Liquid-phase epitaxial layer-by-layer growth of metal-organic framework thin films [J]. Journal of Functional Polymers,2019,32(5):533-540.
    [17] MURRAY D J, PATTERSON D D, PAYAMYAR P, et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface [J]. Journal of the American Chemical Society,2015,137(10):3450-3453. doi: 10.1021/ja512018j
    [18] QI H, SAHABUDEEN H, LIANG B, et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer [J]. Science Advances,2020,6(33):eabb5976. doi: 10.1126/sciadv.abb5976
    [19] 庄小东. 表面活性剂辅助界面聚合法合成结晶性二维聚合物 [J]. 功能高分子学报,2021,34(1):1-4.

    ZHUANG X D. Surfactant-assisted interfacial synthesis of crystalline, two-dimensional polymers [J]. Journal of Functional Polymers,2021,34(1):1-4.
    [20] SAHABUDEEN H, ZHENG Z K, FENG X L, et al. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness [J]. Nature Communications,2016,7(1):13461-13468. doi: 10.1038/ncomms13461
    [21] LIU K, ZHENG Z, FENG X, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers [J]. Nature Communications,2019,11(11):994-1000.
    [22] SAHABUDEEN H, ZHENG Z, FENG X, et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis [J]. Angewandte Chemie International Edition,2020,59(15):6028-6036. doi: 10.1002/anie.201915217
    [23] LI X, YADAV P, LOH K P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks from 3D solids to 2D sheets [J]. Chemical Society Reviews,2020,49(14):4835-4866. doi: 10.1039/D0CS00236D
    [24] LI X, GAO Q, WANG J, et al. Tuneable near white-emissive two-dimensional covalent organic frameworks [J]. Nature Communications,2018,9(1):2335-2343. doi: 10.1038/s41467-018-04769-6
    [25] PANG Z F, XU S Q, ZHOU T Y, et al. Construction of covalent organic frameworks bearing three different kinds of pores through the heterostructural mixed linker strategy [J]. Journal of the American Chemical Society,2016,138(14):4710-4713. doi: 10.1021/jacs.6b01244
    [26] YIN H Q, YIN F F, YIN X B. Strong dual emission in covalent organic frameworks induced by ESIPT [J]. Chemical Science,2019,10(48):11103-11109. doi: 10.1039/C9SC03040A
    [27] JIANG D L, CHEN X, HUANG N, et al. Towards covalent organic frameworks with predesignable and aligned open docking sites [J]. Chemical Communications,2014,50(46):6161-6163. doi: 10.1039/C4CC01825G
    [28] QIAN H L, DAI C, YAN X P, et al. High-crystallinity covalent organic framework with dual fluorescence emissions and its ratiometric sensing application [J]. ACS Applied Materials & Interfaces,2017,9(29):24999-25005.
  • 加载中
图(7)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  266
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 网络出版日期:  2021-04-15
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回