高级检索

    孙秀敏, 庞卯, 冯丰, 刘斌, 戎利民, 何留民. 功能高分子材料促进脊髓损伤后再生修复的研究进展[J]. 功能高分子学报, 2021, 34(4): 301-319. doi: 10.14133/j.cnki.1008-9357.20210118001
    引用本文: 孙秀敏, 庞卯, 冯丰, 刘斌, 戎利民, 何留民. 功能高分子材料促进脊髓损伤后再生修复的研究进展[J]. 功能高分子学报, 2021, 34(4): 301-319. doi: 10.14133/j.cnki.1008-9357.20210118001
    SUN Xiumin, PANG Mao, FENG Feng, LIU Bin, RONG limin, HE Liumin. Research Progress of Functional Polymer for Spinal Cord Regeneration[J]. Journal of Functional Polymers, 2021, 34(4): 301-319. doi: 10.14133/j.cnki.1008-9357.20210118001
    Citation: SUN Xiumin, PANG Mao, FENG Feng, LIU Bin, RONG limin, HE Liumin. Research Progress of Functional Polymer for Spinal Cord Regeneration[J]. Journal of Functional Polymers, 2021, 34(4): 301-319. doi: 10.14133/j.cnki.1008-9357.20210118001

    功能高分子材料促进脊髓损伤后再生修复的研究进展

    Research Progress of Functional Polymer for Spinal Cord Regeneration

    • 摘要: 脊髓损伤后损伤区域神经纤维束的破坏,导致损伤区域以下长久的感觉和运动功能丧失。损伤区域恶劣的微环境是脊髓损伤难以修复的一大问题,大量的炎症细胞聚集、细胞死亡、抑制因子的分泌等,进一步导致损伤区域神经细胞的二次死亡、胶质细胞过度增生、胶原纤维沉积等。不利的微环境不仅限制轴突的再生,同时损伤神经干细胞的功能,不利于神经干细胞向损伤区域迁移并向神经元分化。虽然近期的研究证明脊髓损伤后轴突在合适的基质环境下能够再生,但完全恢复目前还没有可行措施。近年来,高分子生物材料在脊髓损伤修复研究中取得了一定进展,可以发挥多种功能:减少空洞和瘢痕组织的形成,为再生轴突的生长提供支撑作用;调控细胞行为,诱导神经细胞生长和分化;抑制炎症细胞的非特异性渗入进而改善脊髓损伤区域的微环境;作为载体负载和释放药物、细胞和生物活性因子。本文结合本课题组的研究从生物材料种类、支架类型、微环境构建以及因子负载等方面在脊髓损伤修复中的应用研究进行了综述,为生物材料用于脊髓损伤的治疗提供基础研究方向。

       

      Abstract: Spinal cord injury (SCI) is a severe and irreversible injury in the central nervous system, which often leads to permanent motor and sensory dysfunction. The outcome of nerve regeneration after SCI is mostly limited by the resulting adverse microenvironment from the spontaneous inflammatory cells infiltration and host cell death. The activation and accumulation of macrophages/microglia at the lesion sites often leads to secondary damage, including neuron death, astrocyte gliosis and collagen fibrosis, which eventually impairs biological functions of neural stem cells, such as migration and differentiation, either endogenously or exogenously. Although recent studies have shown that axons can regenerate in a suitable matrix environment after spinal cord injury, there is no feasible measure for functional recovery. In recent years, biomaterial scaffold-based strategies have become an attractive alternative for neural regeneration. Biocompatible polymers have multiple functions: promoting cell growth and differentiation; minimizing cavitation, inhibiting cicatrization and astrocytes/collagen accumulation; presenting nonspecific infiltration of inflammatory cells; serving as carriers of cells and bioactive factors. Therefore, polymer scaffolds have been investigated as potential therapies for SCI. This review will highlight the compositions, forms and microenvironment construction of polymer scaffolds for SCI treatment. Additionally, the peculiar properties of the polymer materials used in the therapeutic process of SCI also show new guiding significance for tissue engineering approaches.

       

    /

    返回文章
    返回