高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能高分子在相变蓄热材料中的应用研究进展

肖昌仁 朱胜天 张国庆 杨晓青

肖昌仁, 朱胜天, 张国庆, 杨晓青. 功能高分子在相变蓄热材料中的应用研究进展[J]. 功能高分子学报, 2021, 34(4): 336-351. doi: 10.14133/j.cnki.1008-9357.20210113001
引用本文: 肖昌仁, 朱胜天, 张国庆, 杨晓青. 功能高分子在相变蓄热材料中的应用研究进展[J]. 功能高分子学报, 2021, 34(4): 336-351. doi: 10.14133/j.cnki.1008-9357.20210113001
XIAO Changren, ZHU Shengtian, ZHANG Guoqing, YANG Xiaoqing. Application Research Progress of Functional Polymers in Phase Change Thermal Storage Materials[J]. Journal of Functional Polymers, 2021, 34(4): 336-351. doi: 10.14133/j.cnki.1008-9357.20210113001
Citation: XIAO Changren, ZHU Shengtian, ZHANG Guoqing, YANG Xiaoqing. Application Research Progress of Functional Polymers in Phase Change Thermal Storage Materials[J]. Journal of Functional Polymers, 2021, 34(4): 336-351. doi: 10.14133/j.cnki.1008-9357.20210113001

功能高分子在相变蓄热材料中的应用研究进展

doi: 10.14133/j.cnki.1008-9357.20210113001
基金项目: 国家自然科学基金(21875046);广东省自然科学基金(2019A1515011525)
详细信息
    作者简介:

    肖昌仁(1994—),博士生,主要研究方向为相变材料电池热管理技术。E-mail:Xiaochangren@mail2.gdut.edu.cn

    通讯作者:

    杨晓青,E-mail:Yangxiaoqing@mail.gdut.edu.cn

  • 中图分类号: O63

Application Research Progress of Functional Polymers in Phase Change Thermal Storage Materials

  • 摘要: 相变蓄热材料(PCM)可以通过相变吸收/释放大量热量而保持温度恒定不变,广泛应用于建筑节能、余热回收、冷链输运、太阳能-热能转换/储存和电池热管理等领域。然而,固-液PCM蓄热饱和后往往面临泄漏/形貌坍塌等稳定性问题。精细化设计/合成高吸附性功能高分子材料作为骨架包覆/封装PCM,或者将相变分子束缚在高分子骨架上获得可蓄热的相变功能高分子,是在兼顾储热密度条件下解决PCM稳定性问题的有效途径。本文以功能高分子材料为主题,围绕固-液PCM的功能高分子骨架、固-固相变功能高分子及其应用等3方面,综述了功能高分子在PCM中的应用研究进展,为PCM相关功能高分子材料的设计、制备提供一定的借鉴和参考。

     

  • 图  1  梳状聚降冰片烯及其对应单体的合成机理[39]

    Figure  1.  Synthetic procedures of polynorbornenes and the corresponding monomers[39]

    图  2  (a)聚丙烯酸/二氧化硅半互穿网络功能高分子支撑骨架合成机理示意图; (b)MPTMS 和(c)PEG 的化学结构式[43]

    Figure  2.  (a) Synthetic route of polyacrylic acid/SiO2 semi-interlacing functional polymer skeleton; Structural formula of (b) MPTMS and (c) PEG [43]

    图  3  Gm水凝胶的合成机理示意图[16]

    Figure  3.  Synthetic route of Gm gelators[16]

    图  4  M6biCm单体和对应P6biCm聚合物的合成机理示意图[17]

    Figure  4.  Synthetic route of M6biCm and their corresponding P6biCm polymers[17]

    图  5  超交联聚苯乙烯封装石蜡CPCM的制备流程图[35]

    Figure  5.  Synthetic route of the CPCM based on hyper-crosslinked polystyrene encapsulated paraffin[35]

    图  6  EPPa-X型PCM的制备及其相变行为[47]

    Figure  6.  Preparation of EPPa-X PCM and its phase change behavior[47]

    图  7  (a)PPEGMA和PEG/PPEGMA的合成路线;(b)PEG与PPEGMA的相容性和诱导偶极力的示意图 ; (c)宏观形状稳定性示意图[48]

    Figure  7.  (a) Synthesis route of PPEGMA and PEG/PPEGMA; (b) Schematic illustration showing the compatibility and induced dipole force between PEG and PPEGMA; (c) Schematic diagram of macroscopically shape-stability[48]

    图  8  PEG/PC3D复合材料的合成路线示意图[49]

    Figure  8.  Synthetic route of PEG/PC3D composite[49]

    图  9  PUPCM的制备流程示意图[28]

    Figure  9.  Synthetic procedures of PUPCM[28]

    图  10  HB-PUPCM的制备流程示意图[29]

    Figure  10.  Synthetic route of HB-PUPCM[29]

    图  11  柔性PU/CNT的制备流程示意图[51]

    Figure  11.  Synthetic route of flexible PU/CNT[51]

    图  12  SWNT/PCM的制备流程图[4]

    Figure  12.  Synthetic route of SWNT/PCM[4]

    图  13  DADGEBA和ODT的硫醇-烯点击化学反应示意图[52]

    Figure  13.  Thiol-ene click reaction mechanism illustration of DADGEBA and ODT[52]

    图  14  交联EPD18-100相变功能高分子的制备及其相变行为[52]

    Figure  14.  Preparation of crosslinking EPD18-100 phase changeable functional polymer and its phase change behavior[52]

    图  15  P(Be-co-MMA)的合成流程图及其相变机理示意图[10]

    Figure  15.  Synthetic procedures of P(Be-co-MMA) and its phase change mechanism illustrations[10]

    图  16  EMA-g-CnH2n+1OH 合成示意图[25]

    Figure  16.  Synthetic routes of EMA-g-CnH2n+1OH[25]

    图  17  PANAn 合成示意图[27]

    Figure  17.  Synthetic routes of PANAn[27]

    图  18  SWCNT/PCM复合材料的光-热转换/存储示意图[4]

    Figure  18.  Photo-thermal conversion/storage schematic illustration of SWCNT/PCM[4]

  • [1] 纪旭阳, 金兆国, 梁福鑫. 相变材料在建筑节能中的应用 [J]. 功能高分子学报,2019,32(5):541-549.

    JI X Y, JIN Z G, LIANG F X. Application of phase change materials in building energy conservation [J]. Journal of Functional Polymers,2019,32(5):541-549.
    [2] GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials: A review [J]. Applied Energy,2019,238:582-611. doi: 10.1016/j.apenergy.2019.01.114
    [3] WU W X, WU W, WANG S F. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications [J]. Applied Energy,2019,236:10-21. doi: 10.1016/j.apenergy.2018.11.071
    [4] WANG Y, TANG B, ZHANG S. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage [J]. Advanced Functional Materials,2013,23(35):4354-4360. doi: 10.1002/adfm.201203728
    [5] WU W, LIU J, LIU M, et al. An innovative battery thermal management with thermally induced flexible phase change material [J]. Energy Conversion and Management,2020,221:113145. doi: 10.1016/j.enconman.2020.113145
    [6] 卢铁梅, 朱紫璇, 胡湖, 等. 聚丙烯酸钠/十水合硫酸钠复合相变材料 [J]. 功能高分子学报,2020,33(2):157-164.

    LU T M, ZHU Z X, HU H, et al. Sodium polyacrylate/sodium sulfate decahydrate phase change composites [J]. Journal of Functional Polymers,2020,33(2):157-164.
    [7] WANG T, JIANG Y, HUANG J, et al. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network [J]. Applied Energy,2018,218:184-191. doi: 10.1016/j.apenergy.2018.02.108
    [8] ZHANG J Y, LI X X, ZHANG G Q, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management [J]. Energy Conversion and Management,2020,204:112319. doi: 10.1016/j.enconman.2019.112319
    [9] HE J, YANG X, ZHANG G. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management [J]. Applied Thermal Engineering,2019,148:984-991. doi: 10.1016/j.applthermaleng.2018.11.100
    [10] MAO Y, GONG J, ZHU M, et al. Excellent thermal stability P(BeA-co-MMA) microcapsules with high thermal energy storage capacity [J]. Polymer,2018,150:267-274. doi: 10.1016/j.polymer.2018.07.040
    [11] WANG T, WANG S, LUO R, et al. Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage [J]. Applied Energy,2016,171:113-119. doi: 10.1016/j.apenergy.2016.03.037
    [12] WANG T, WANG S, GENG L, et al. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network [J]. Applied Energy,2016,179:601-608. doi: 10.1016/j.apenergy.2016.07.026
    [13] SHI J, WU X, FU X, et al. Synthesis and thermal properties of a novel nanoencapsulated phase change material with PMMA and SiO2 as hybrid shell materials [J]. Thermochimica Acta,2015,617:90-94. doi: 10.1016/j.tca.2015.08.022
    [14] XUAN Y, HUANG Y, LI Q. Experimental investigation on thermal conductivity and specific heat capacity of magnetic microencapsulated phase change material suspension [J]. Chemical Physics Letters,2009,479(4-6):264-269. doi: 10.1016/j.cplett.2009.08.033
    [15] LYU Y, LIU G, ZHANG G, et al. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules [J]. Journal of Power Sources,2020,468:228398. doi: 10.1016/j.jpowsour.2020.228398
    [16] WU D, WEN W, CHEN S, et al. Preparation and properties of a novel form-stable phase change material based on a gelator [J]. Journal of Materials Chemistry A,2015,3(6):2589-2600. doi: 10.1039/C4TA06508E
    [17] WU D, NI B, LIU Y, et al. Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials [J]. Journal of Materials Chemistry A,2015,3(18):9645-9657. doi: 10.1039/C5TA00606F
    [18] YANG J, QI G Q, BAO R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials [J]. Energy Storage Materials,2018,13:88-95. doi: 10.1016/j.ensm.2017.12.028
    [19] HUANG X Y, LIU Z P, XIA W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels [J]. Journal of Materials Chemistry A,2015,3(5):1935-1940. doi: 10.1039/C4TA06735E
    [20] LYU Y F, SITU W F, YANG X Q, et al. A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management [J]. Energy Conversion and Management,2018,163:250-259. doi: 10.1016/j.enconman.2018.02.061
    [21] ZHANG X, LIU C Z, RAO Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material [J]. Journal of Cleaner Production,2018,201:916-924. doi: 10.1016/j.jclepro.2018.08.076
    [22] XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material [J]. Applied Energy,2013,112:1357-1366. doi: 10.1016/j.apenergy.2013.04.050
    [23] SARDARI P T, BABAEI-MAHANI R, GIDDINGS D, et al. Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage [J]. Journal of Cleaner Production,2020,257:120504. doi: 10.1016/j.jclepro.2020.120504
    [24] 顾晓华, 李世伟, 郑兵, 等. PEG-沸石固-固相变材料的制备及性能 [J]. 功能高分子学报,2012,25(2):191-194.

    GU X H, LI S W, ZHENG B, et al. Preparation and properties of PEG-zeolite solid-solid phase change material [J]. Journal of Functional Polymers,2012,25(2):191-194.
    [25] LIU L, WANG H. Shape-stabilized phase change materials based on poly(ethylene-graft-maleic anhydride)-g-alkyl alcohol comb-like polymers [J]. Solar Energy Materials & Solar Cells,2015,143:21-28.
    [26] LIU L, KONG L, WANG H, et al. Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly(styrene-co-maleic anhydride)-g-octadecanol comb-like polymeric phase change materials [J]. Solar Energy Materials and Solar Cells,2016,149:40-48. doi: 10.1016/j.solmat.2016.01.001
    [27] CHEN W, XIANG H, JIANG Y, et al. Shape-stabilized phase change materials with high phase change enthalpy based on synthetic comb-like poly(acrylonitrile-co-ethylene glycol) for thermal management [J]. Science China Chemistry,2017,60(11):1450-1457. doi: 10.1007/s11426-017-9119-2
    [28] 粟劲苍, 刘朋生. 具有储能功能的聚氨酯固-固相变材料的研究 [J]. 华东理工大学学报(自然科学版),2006,32(2):197-200. doi: 10.3969/j.issn.1006-3080.2006.02.016

    SU J C, LIU P S. Polyurethane polymer having heat storage effects in solid-solid phase change [J]. Journal of East University of Science and Technology (Natural Science Edition),2006,32(2):197-200. doi: 10.3969/j.issn.1006-3080.2006.02.016
    [29] CAO Q, LIU P. Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters [J]. Polymer Bulletin,2006,57(6):889-899. doi: 10.1007/s00289-006-0650-z
    [30] DAN S, WANG L, LI C. Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material [J]. Materials Letters,2013,108(1):247-249.
    [31] LI M, WU Z, KAO H, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material [J]. Energy Conversion and Management,2011,52(11):3275-3281. doi: 10.1016/j.enconman.2011.05.015
    [32] LI M, KAO H, WU Z, et al. Study on preparation and thermal property of binary fatty acid and the binary fatty acids/diatomite composite phase change materials [J]. Applied Energy,2011,88(5):1606-1612. doi: 10.1016/j.apenergy.2010.11.001
    [33] SITU W F, ZHANG G Q, LI X X, et al. A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates [J]. Energy,2017,141:613-623. doi: 10.1016/j.energy.2017.09.083
    [34] ZHANG P, HU Y, SONG L, et al. Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material [J]. Solar Energy Materials and Solar Cells,2010,94(2):360-365. doi: 10.1016/j.solmat.2009.10.014
    [35] LIU C H, XU Z, SONG Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage [J]. Journal of Materials Chemistry A,2019,7(14):8194-8203. doi: 10.1039/C9TA01496A
    [36] ZHANG M, WANG C, LUO A, et al. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials [J]. Applied Thermal Engineering,2020,166:114639. doi: 10.1016/j.applthermaleng.2019.114639
    [37] YANG L, YANG J, TANG L S, et al. Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity [J]. Energy & Fuels,2020,34(2):2471-2479.
    [38] HUANG Y H, CHENG W L, ZHAO R. Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials [J]. Energy Conversion and Management,2019,182:9-20. doi: 10.1016/j.enconman.2018.12.064
    [39] CAO Y, FAN D, LIN S, et al. Phase change materials based on comb-like polynorbornenes and octadecylamine-functionalized graphene oxide nanosheets for thermal energy storage [J]. Chemical Engineering Journal,2020,389:124318. doi: 10.1016/j.cej.2020.124318
    [40] ZHANG Y, WANG L, TANG B, et al. Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure [J]. Applied Energy,2016,184:241-246. doi: 10.1016/j.apenergy.2016.10.021
    [41] XIAO C, ZHANG G, LI Z, et al. Custom design of solid–solid phase change material with ultra-high thermal stability for battery thermal management [J]. Journal of Materials Chemistry A,2020,8(29):14624-14633. doi: 10.1039/D0TA05247G
    [42] MOCHANE M J, MOKHENA T C, MOTAUNG T E, et al. Shape-stabilized phase change materials of polyolefin/wax blends and their composites [J]. Journal of Thermal Analysis and Calorimetry,2019,139(5):2951-2963.
    [43] LIU Z, TANG B, ZHANG S. Novel network structural PEG/PAA/SiO2 composite phase change materials with strong shape stability for storing thermal energy [J]. Solar Energy Materials and Solar Cells,2020,216:110678. doi: 10.1016/j.solmat.2020.110678
    [44] LIU L, FAN X, ZHANG Y, et al. Novel bio-based phase change materials with high enthalpy for thermal energy storage [J]. Applied Energy,2020,268:114979. doi: 10.1016/j.apenergy.2020.114979
    [45] 袁勇杰, 吴铛, 陈磊, 等. 无柔性间隔基侧链型液晶高分子复合定形相变材料的制备与性能研究 [J]. 高分子学报,2017(10):1641-1651. doi: 10.11777/j.issn1000-3304.2017.17106

    YUAN Y J, WU D, CHEN L, et al. Preparation and properties of form-stable phase change materials based on side-chain liquid crystal polymer without flexible spacer [J]. Acta Polymerica Sinica,2017(10):1641-1651. doi: 10.11777/j.issn1000-3304.2017.17106
    [46] LIU C, ZONG J, ZHANG J, et al. Knitting aryl network polymers (KAPs)-embedded copper foam enables highly efficient thermal energy storage [J]. Journal of Materials Chemistry A,2020,8(30):15177-15186. doi: 10.1039/D0TA04626D
    [47] LIAN Q, LI Y, SAYYED A A S, et al. Facile strategy in designing epoxy/paraffin multiple phase change materials for thermal energy storage applications [J]. Acs Sustain Chem Eng,2018,6(3):3375-3384. doi: 10.1021/acssuschemeng.7b03558
    [48] MENG Y, ZHAO Y, ZHANG Y, et al. Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat [J]. Chemical Engineering Journal,2020,390:124618. doi: 10.1016/j.cej.2020.124618
    [49] ZHANG Y, XIU J, TANG B, et al. Novel semi-interpenetrating network structural phase change composites with high phase change enthalpy [J]. AIChE,2018,64(2):688-696. doi: 10.1002/aic.15956
    [50] SU J C, LIU P S. A novel solid–solid phase change heat storage material with polyurethane block copolymer structure [J]. Energy Conversion and Management,2006,47(18-19):3185-3191. doi: 10.1016/j.enconman.2006.02.022
    [51] SHI J, AFTAB W, LIANG Z, et al. Tuning the flexibility and thermal storage capacity of solid-solid phase change materials towards wearable applications [J]. Journal of Materials Chemistry A,2020,8(38):20133-20140. doi: 10.1039/C9TA13925G
    [52] LIAN Q, LI K, SAYYED A A S, et al. Study on a reliable epoxy-based phase change material: Facile preparation, tunable properties, and phase/microphase separation behavior [J]. Journal of Materials Chemistry A,2017,5(28):14562-14574. doi: 10.1039/C7TA02816D
    [53] LI S Q, KONG L, WANG H X, et al. Thermal performance and shape-stabilization of comb-like polymeric phase change materials enhanced by octadecylamine-functionalized graphene oxide [J]. Energy Conversion and Management,2018,168:119-127. doi: 10.1016/j.enconman.2018.05.014
    [54] XU H, WANG H, MAO H, et al. Crystallization and thermal performance of poly(acrylonitrile-co-alkyl acrylate) comb-like polymeric phase change materials with various side-chain lengths [J]. CrystEngComm,2020,22(35):5799-5808. doi: 10.1039/D0CE00929F
    [55] AFTAB W, MAHMOOD A, GUO W, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage [J]. Energy Storage Materials,2019,20:401-409. doi: 10.1016/j.ensm.2018.10.014
    [56] CHEN X, GAO H, HAI G, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy [J]. Energy Storage Materials,2020,26:129-137. doi: 10.1016/j.ensm.2019.12.029
    [57] LV Y F, YANG X Q, LI X X, et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins [J]. Applied Energy,2016,178:376-382. doi: 10.1016/j.apenergy.2016.06.058
  • 加载中
图(18)
计量
  • 文章访问数:  674
  • HTML全文浏览量:  342
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 网络出版日期:  2021-04-13
  • 刊出日期:  2021-07-08

目录

    /

    返回文章
    返回