高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维脉管的GFRP复合材料自修复

赵大方 李斌太 石甲琪 白金鹏

赵大方, 李斌太, 石甲琪, 白金鹏. 基于一维脉管的GFRP复合材料自修复[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210112003
引用本文: 赵大方, 李斌太, 石甲琪, 白金鹏. 基于一维脉管的GFRP复合材料自修复[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210112003
ZHAO Dafang, LI Bintai, SHI Jiaqi, BAI Jinpeng. Self-Healing Vascularized Glass Fiber Reinforced Polymer Composites[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210112003
Citation: ZHAO Dafang, LI Bintai, SHI Jiaqi, BAI Jinpeng. Self-Healing Vascularized Glass Fiber Reinforced Polymer Composites[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210112003

基于一维脉管的GFRP复合材料自修复

doi: 10.14133/j.cnki.1008-9357.20210112003
基金项目: 国家重点研发计划(2017YFB0703300);航空科学基金(2016ZFV8007)
详细信息
    作者简介:

    赵大方(1981—),女,安徽全椒人,博士,高工,研究方向为先进复合材料。E-mail:dafang503@163.com

  • 中图分类号: TQ342.31

Self-Healing Vascularized Glass Fiber Reinforced Polymer Composites

  • 摘要: 以缎纹玻璃纤维织物增强中温固化环氧树脂(SW280A/3218)为原料,用自制的室温固化环氧树脂双组合(XFJ-IV)作为修复剂,采用预埋线去除法制备了基于中空脉管的自修复玻璃纤维增强复合材料(GFRP)。采用超声C扫描、μ-CT等分析了脉管分布和引入方式对复合材料冲击损伤的影响和修复情况,采用冲击后压缩强度的恢复情况表征其修复情况。结果表明,在受到冲击损伤后,脉管中的修复剂能够流到损伤位置对冲击损伤进行一定程度的修复;搭建的冲击损伤自感应自修复系统能够实现对冲击损伤后的自修复,修复后复合材料的压缩强度可以从原有的202 MPa恢复到211 MPa。

     

  • 图  1  采用可去除预埋线法制备含中空脉管的GFRP示意图

    Figure  1.  Schematic illustration for micro-channel creation by removable solid cores

    图  2  脉管在复合材料中空间分布示意图

                a—Parallel to the 0° plies, GFRP-P; b—Normal to the 0° plies, GFRP-V

    Figure  2.  Schematic of composite with embedded vessels located between plies the healing potential

    图  3  损伤感应和自修复系统示意图

    Figure  3.  Schematic of damage sensing and self-healing system

    图  4  10 J/mm能量低速冲击后,GFRP的(a)C扫描图和(b)修复后的C扫描图

    Figure  4.  C scan images of GFRP being impacted with 10 J/mm (a)before and (b)after healing

    图  5  低速冲击后GFRP-P的分厚度C扫描图

    Figure  5.  Ultrasonic C scan images of GFRP-P with various depths after being impacted

    图  6  低速冲击后GFRP-P的μ-CT局部截图

    Figure  6.  μ-CT image of GFRP-P after being impacted

    图  7  低速冲击后GFRP-V(a)光学照片和(c)修复(b)前(c)后的C扫描图像

    Figure  7.  (a)Photograph of impacted sample and ultrasonic C scan images of impacted GFRP-V (b) before and (c)after healing

    图  8  GFRP冲击损伤试样修复后断面的微观形貌

    Figure  8.  Micro-morphologies of fracture surface of impacted GFRP afte healing

    图  9  试样的超声C扫描图片

    Figure  9.  C scan images of samples

    图  10  冲击后修复与未修复试样和未冲击试样的压缩强度对比

    Figure  10.  Compression strength of impacted samples after healing compared with samples without healing and without impact

    图  11  8.3 J/mm能量冲击后GFRP-V修复前后试样的位移载荷曲线

    Figure  11.  Load-displacement curves of compression of impacted samples(8.3 J/mm) after healing compared with samples without healing and without impact

    图  12  自修复的GFRP试样

        a—Optical photograph;b—Ultrasonic C-scan image

    Figure  12.  Self-healing GFRP samples

    表  1  GFRP-P试样在10 J/mm低速冲击并修复前后的情况并与CAI及未冲击试样对比

    Table  1.   Properties for GFRP-P samples before and after healing when being impaced and compared with CAI samples and undamaged samples

    NoSampleDamage depth/mmSDamaged/mm2SHealed/mm2${{\rm{\eta}} _{\rm{s}}} $/%Compression strength/MPaCompression modulus/GPa
    1#Compressed without impact21321.4
    2#21921.5
    3#20921.4
    4#Compressed before healing0.2825321021.0
    5#0.3126620521.1
    6#0.2723719320.5
    7#Compressed after healing0.2726817435.121521.1
    8#0.2928913453.618720.9
    9#0.2925816934.520120.6
    SDamaged: Damaged area before healing; SHealed: Damaged area after healing; ${{\rm{\eta}} _{\rm{s}}} = \dfrac{{{{{S}}_{{\rm{Damaged}}}} - {{{S}}_{{\rm{Healed}}}}}}{{{{{S}}_{{\rm{Damaged}}}}}} \times 100\%$
    下载: 导出CSV
  • [1] TOOHEY K S, SOTTOS N R, LEWIS J A, et al. Self-healing materials with microvascular networks [J]. Nature Materials,2007,6(8):581-585. doi: 10.1038/nmat1934
    [2] ZHONG N, POST W. Self-repair of structural and functional composites with intrinsically self-healing polymer matrices: A review [J]. Composites Part A: Applied Science and Manufacturing,2015,69:226-239. doi: 10.1016/j.compositesa.2014.11.028
    [3] ZWAAG S V D, GRAND A M, POST W, et al. Review of current strategies to induce self-healing behaviour in fibre reinforced polymer based composite [J]. Materials Science and Technology,2014,30(13):1633-1641.
    [4] MOTUKU M, VAIDYA U K, JANOWSKI G M. Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact [J]. Smart Materials & Structure,1999,8(5):623.
    [5] NORRIS C J, MEADWAY G J, O’SULLIVAN M J, et al. Self-healing fibre reinforced composites via a bioinspired vasculature [J]. Advanced Functional Materials,2011,21:3624-3633. doi: 10.1002/adfm.201101100
    [6] NORRIS C J, BOND I P, TRASK R S. The role of embedded bioinspired vasculature on damage formation in self-healing carbon fibre reinforced composites [J]. Composites Part A: Applied Science and Manufacturing,2011,42:639-648. doi: 10.1016/j.compositesa.2011.02.003
    [7] NORRIS C J, TRASK R S, BOND I P. Interactions between propagating cracks and bioinspired self-healing vascules embedded in glass fibre reinforced composites [J]. Composites Science and Technology,2011,71(6):847-853. doi: 10.1016/j.compscitech.2011.01.027
    [8] NORRIS C J, WHITE J A P, MCCOMBE G, et al. Autonomous stimulus triggered self-healing in smart structural composites [J]. Smart Materials & Structure,2012(21):094027.
    [9] NORRIS C J, BOND I P, TRASK R S. Healing of low-velocity impact damage in vascularised composites [J]. Composites Part A: Applied Science and Manufacturing,2013,44:78-85. doi: 10.1016/j.compositesa.2012.08.022
    [10] TRASK R S, NORRIS C J, BOND I P. Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites [J]. Journal of Intelligent Material Systems and Structures,2014,25(1):87-97. doi: 10.1177/1045389X13505006
    [11] OMOSOLA F, KEVIN R, BISWAJIT B. Glass fibre polyester composite with in vivo vascular channel for use in self-healing [J]. Smart Materials and Structures,2014,23(9):095017. doi: 10.1088/0964-1726/23/9/095017
    [12] ESSER-KAHN A P, THAKRE P R, DONG H, et al. Three-dimensional microvascular fiber-reinforced composites [J]. Advanced Materials,2011,32:3653.
    [13] PATRICK J F, HART K R, KRULL B P, et al. Continuous self-healing life cycle in vascularized structural composites [J]. Advanced Materials,2014,26(25):4302-4308. doi: 10.1002/adma.201400248
    [14] 高龙, 俞慧涛, 王健, 等. 基于氢键交联的低温自修复聚合物 [J]. 功能高分子学报,2020,33(6):547-553.

    GAO L, YU T H, WANG J, et al. Low-temperature self-healing polymer based on hydrogen bonding cross-linking [J]. Journal of Functional Polymers,2020,33(6):547-553.
    [15] 时金凤, 赵娜, 符文鑫, 等. 基于可逆离子氢键构筑室温快速自修复聚硅氧烷弹性体 [J]. 功能高分子学报,2020,33(5):433-440.

    SHI J F, ZHAO N, FU W X, et al. A stretchable and rapidly self-healable polysiloxane elastomer based on reversible ionic hydrogen bonds [J]. Journal of Functional Polymers,2020,33(5):433-440.
    [16] TRASK R S, NORRIS C J, BOND I P. Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites [J]. Journal of Intelligent Material Systems and Structures,2014,25(1):87-97. doi: 10.1177/1045389X13505006
    [17] SHU M, HARUKA T, HIDEHIKO B, et al. Hierarchical fiber-optic-based sensing system: Impact damage monitoring of large-scale CFRP structures [J]. Smart Materials and Structures,2011,20(8):085029. doi: 10.1088/0964-1726/20/8/085029
    [18] SHU M, DENGHAO S, NOBUO T. Hierarchical system for autonomous sensing-healing of delamination in large-scale composite structures [J]. Smart Materials and Structures,2014,23(11):115014. doi: 10.1088/0964-1726/23/11/115014
    [19] SAKURAYAMA N, MINAKUCHI S, TAKEDA N. Sensing and healing of disbond in composite stiffened panel using hierarchical system [J]. Composites Structure,2015,132:833-841. doi: 10.1016/j.compstruct.2015.06.074
    [20] INSTITUTE A N S. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event[S]: ASTM D7136/D 7136M. West Conshohocken, USA: ASTM International: 2007.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  64
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回