高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于聚薁胺的全固态超级电容器性能

金欣 陈祉安 孙赛 庄小东 陈彧

金欣, 陈祉安, 孙赛, 庄小东, 陈彧. 基于聚薁胺的全固态超级电容器性能[J]. 功能高分子学报, 2021, 34(5): 418-424. doi: 10.14133/j.cnki.1008-9357.20210112002
引用本文: 金欣, 陈祉安, 孙赛, 庄小东, 陈彧. 基于聚薁胺的全固态超级电容器性能[J]. 功能高分子学报, 2021, 34(5): 418-424. doi: 10.14133/j.cnki.1008-9357.20210112002
JIN Xin, CHEN Zhian, SUN Sai, ZHUANG Xiaodong, CHEN Yu. Properties of Poly(2-aminoazulene)-Based All-Solid-State Supercapacitors[J]. Journal of Functional Polymers, 2021, 34(5): 418-424. doi: 10.14133/j.cnki.1008-9357.20210112002
Citation: JIN Xin, CHEN Zhian, SUN Sai, ZHUANG Xiaodong, CHEN Yu. Properties of Poly(2-aminoazulene)-Based All-Solid-State Supercapacitors[J]. Journal of Functional Polymers, 2021, 34(5): 418-424. doi: 10.14133/j.cnki.1008-9357.20210112002

基于聚薁胺的全固态超级电容器性能

doi: 10.14133/j.cnki.1008-9357.20210112002
基金项目: 国家自然科学基金(51961145402,51722304,51973114,51973061)
详细信息
    作者简介:

    金欣:金 欣(1996—),女,硕士生,主要研究方向为全固态超级电容器。E-mail:jinxin66@139.com

    通讯作者:

    陈 彧,E-mail:chentangyu@yahoo.com

    庄小东,E-mail:zhuang@sjtu.edu.cn

  • 中图分类号: O69

Properties of Poly(2-aminoazulene)-Based All-Solid-State Supercapacitors

  • 摘要: 报道了一种新型导电聚合物聚薁胺,并制备了基于聚薁胺作为电极材料,磷酸/聚乙烯醇作为电解液的全固态超级电容器,研究了聚薁胺电容器的的基本性质。电化学测试结果表明,该器件在工作电压窗口−0.2~0.8 V下表现出优异的电容性能,可实现最大体积电容83 F/cm3和最大的面积比电容0.54 mF/cm2,最大能量密度和最大功率密度分别为11.6 mW·h/cm3和3304 W/cm3。此外,该器件循环测试1000圈后仍保存初始电容的95.1%,表现出优异的循环稳定性。结果证明聚薁胺可以应用于超级电容器,为开发本征导电聚合物的探索提供了新策略。

     

  • 图  1  PAAz的制备

    Figure  1.  Synthesis of PAAz

    图  2  不同扫描电压范围内PAAz的循环伏安曲线

    Figure  2.  Cyclic voltammetry curves of PAAz in different voltage regions

    图  3  (a)全固态超级电容器结构示意图;(b,c,d)超级电容器在不同扫描速率下的CV曲线

    Figure  3.  (a) Schematic diagram of an all-solid-state integrated supercapacitor,(b, c, d) CV curves of supercapcitor at different scan rates

    图  4  基于PAAz超级电容器的CACV(由CV数据计算)

    Figure  4.  CA and CV as a function of PAAz-based supercapacitor (Calculated from CV data)

    图  5  基于PAAz超级电容器的(a)充放电曲线,(b)CACV随电流密度的变化

    Figure  5.  (a) Charge/discharge curves,(b) CA and CV with different current densities of PAAz-based supercapacitor

    图  6  基于PAAz超级电容器的循环稳定性

    Figure  6.  Cycling stability of PAAz-based supercapacitor

    图  7  基于PAAz超级电容器的(a)电化学阻抗谱(插图为高频区放大图),(b)频率-相位角曲线和(c)等效电路图

    Figure  7.  (a)Nyquist plots, (b)bode plots and (c) equivalent circuit of the PPAz-based supercapacitor

    图  8  基于PAAz的超级电容器的(a)电容-频率图;(b)体积电容-频率图

    Figure  8.  Frequency dependence of (a)capacitance and (b)volumetric capacitance of the PAAz-based supercapacitor

    图  9  基于PAAz的超级电容器的电荷存储机理

    Figure  9.  Possible charge store mechanism of PAAz-based supercapacitor

    图  10  基于PAAz的超级电容器的Ragone曲线

    Figure  10.  Ragone plots for PAAz-based supercapacitor

    表  1  基于PPAz超级电容器的等效电路拟合参数

    Table  1.   Equivalent circuit fitting parameters of PAAz-based supercapacitor

    SampleRs CPE1R1CPEdlRct /kΩ
    Q/(10−4S·snnQ/(10−4S·snn
    PAAz2.2114.6610.693512.51.3930.906313.56
    CPE: Constant phase element; dl: double layer; Q: Symbol of constant phase element; n: An empirical constant representing the degree of apporach to an ideal capacitor
    下载: 导出CSV
  • [1] SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin? [J]. Science,2014,343(6):1210-1211.
    [2] YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions [J]. Energy & Environmental Science,2015,8(3):702-730.
    [3] YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities [J]. Advanced Energy Materials,2014,4:1300816. doi: 10.1002/aenm.201300816
    [4] REN J, LI L, CHEN C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery [J]. Advanced Materials,2013,25(8):1155-1159. doi: 10.1002/adma.201203445
    [5] WANG X F, WANG D Z, LIANG L. Electrochemical capacitor using nickel oxide/carbon nanotube composites electrode [J]. Journal of Inorganic Materials,2003,18(2):331-336.
    [6] EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J]. Nature Communications,2013,4:1475. doi: 10.1038/ncomms2446
    [7] BONACCORSO F, COLOMBO L, YU G, et al. Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage [J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
    [8] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets [J]. Nature Chemistry,2013,5:263-275. doi: 10.1038/nchem.1589
    [9] LIU J, ZHOU Y, XIE Z, et al. Conjugated copper-catecholate framework electrodes for efficient energy storage [J]. Angewandte Chemie: International Edition,2020,59(3):1081-1086. doi: 10.1002/anie.201912642
    [10] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance [J]. Nature Materials,2017,16:220-224. doi: 10.1038/nmat4766
    [11] WU Q, XU Y, YAO Z, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films [J]. ACS Nano,2010,4(4):1963-1970. doi: 10.1021/nn1000035
    [12] LIU T, FINN L, YU M, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability [J]. Nano Letters,2014,14(5):2522-2527. doi: 10.1021/nl500255v
    [13] SONG Y, LIU T, XU X et al. Pushing the cycling stability limit of polypyrrole for supercapacitors [J]. Advanced Functional Materials,2015,25(29):4626-4632. doi: 10.1002/adfm.201501709
    [14] OTERO T F, MARTINEZ J G. Structural and biomimetic chemical kinetics: Kinetic magnitudes include structural information [J]. Advanced Functional Materials,2013,23(4):404-416. doi: 10.1002/adfm.201200719
    [15] SUN S, ZHUANG X, WANG L, et al. Azulene-bridged coordinated framework based quasi-molecular rectifier [J]. Journal of Materials Chemistry C,2017,5(9):2223-2229. doi: 10.1039/C6TC05362A
    [16] HUANG J, HUANG S, ZHAO Y, et al. Azulene-based molecules, polymers, and frameworks for optoelectronic and energy applications [J]. Small Methods,2020,4(10):2000628. doi: 10.1002/smtd.202000628
    [17] STEJSKAL J, GILBERT R G. Polyaniline. Preparation of a conducting polymer (IUPAC technical report) [J]. Pure Appl Chem,2002,74:857-867. doi: 10.1351/pac200274050857
    [18] YANG C, SCHELLHAMMER K S, ORTMANN F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance [J]. Angewandte Chemie: International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
    [19] ZHUANG X, MAI Y, WU D, et al. Two-dimensional soft nanomaterials: A fascinating world of materials [J]. Advanced Materials,2015,27(3):403-427. doi: 10.1002/adma.201401857
    [20] ZHU J, YANG C, LU C, et al. Two-dimensional porous polymers: From sandwich-like structure to layered skeleton [J]. Accounts of Chemical Research,2018,51(12):3191-3202. doi: 10.1021/acs.accounts.8b00444
    [21] ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials [J]. Science China Chemistry,2019,62(9):1145-1193. doi: 10.1007/s11426-019-9477-y
    [22] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料再能源及转化领域的应用 [J]. 功能高分子学报,2019,32(2):155-177.

    JIANG K Y, YANG C Q, ZHUANG X D. Conductive two-dimensional coordination polymer frameworks for energy conversion and storage [J]. Journal of Functional Polymers,2019,32(2):155-177.
    [23] 封博谞, 庄小东. 碳基介熵材料: 理论与实验 [J]. 化学学报,2020,78(9):833-847.

    FENG B X, ZHUANG X D. Carbon-enriched meso-entropy materials: From theory to cases [J]. Acta Chimica Sinica,2020,78(9):833-847.
    [24] 康佳玲, 王红星, 邱丰, 等. sp2碳连接的二维聚合物 [J]. 功能高分子学报,2021,34(1):5-25.

    KANG J L, WANG H X, QIU F, et al. Two-dimensional polymers based on sp2-hybridized-carbon connections [J]. Journal of Functional Polymers,2021,34(1):5-25.
    [25] ALLENDORF M, DONG R, FENG X, et al. Electronic devices using open framework materials [J]. Chemical Reviews,2020,120(16):8581-8640. doi: 10.1021/acs.chemrev.0c00033
    [26] CONG H, REN X, WANG P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J]. Energy & Environmental Science,2013,6(4):1185-1191.
    [27] MILLER J R, OUTLAW R A, HOLLOWAY B C. Graphene double-layer capacitor with AC line-filtering performance [J]. Science,2010,329(5999):1637-1639. doi: 10.1126/science.1194372
    [28] WU Z, TAN Y, ZHENG S, et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur-annulated nanographene for ultrahigh volumetric capacitance micro-supercapacitors [J]. Journal of the American Chemical Society,2017,139(12):4506-4512. doi: 10.1021/jacs.7b00805
    [29] WU Z, LIU Z, PARVEZ K, et al. Ultrathin printable graphene supercapacitors with AC line-filtering performance [J]. Advanced Materials,2015,27(24):3669-3675. doi: 10.1002/adma.201501208
    [30] EL-KADY M F, STRONG V, DUBLIN S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors [J]. Science,2012,335(6074):1326-1330. doi: 10.1126/science.1216744
    [31] PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J]. Nature Nanotechnology,2010,5:651-654. doi: 10.1038/nnano.2010.162
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  887
  • HTML全文浏览量:  564
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 网络出版日期:  2021-03-10
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回