高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于并二噻吩桥联聚吡咯薄膜的微型超级电容器

侯鹏鑫 姜恺悦 翟光群 庄小东

侯鹏鑫, 姜恺悦, 翟光群, 庄小东. 基于并二噻吩桥联聚吡咯薄膜的微型超级电容器[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210110001
引用本文: 侯鹏鑫, 姜恺悦, 翟光群, 庄小东. 基于并二噻吩桥联聚吡咯薄膜的微型超级电容器[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.20210110001
HOU Pengxin, JIANG Kaiyue, ZHAI Guangqun, ZHUANG Xiaodong. Thieno[3,2-b]thiophene-Bridged Polypyrrole Film-Based Micro-Supercapacitors[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210110001
Citation: HOU Pengxin, JIANG Kaiyue, ZHAI Guangqun, ZHUANG Xiaodong. Thieno[3,2-b]thiophene-Bridged Polypyrrole Film-Based Micro-Supercapacitors[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.20210110001

基于并二噻吩桥联聚吡咯薄膜的微型超级电容器

doi: 10.14133/j.cnki.1008-9357.20210110001
基金项目: 科技部重点研发计划(2017YFE9134000);国家自然科学基金(51973114,21720102002,51811530013);上海市科委科技创新行动计划(19JC412600)
详细信息
    作者简介:

    侯鹏鑫(1996—),男,硕士生,主要研究方向为二维聚合物与膜。E-mail:18000262@smail.cczu.edu.cn

    通讯作者:

    翟光群,E-mail:zhai_gq@cczu.edu.cn

    庄小东,zhuang@sjtu.edu.cn

  • 中图分类号: O631

Thieno[3,2-b]thiophene-Bridged Polypyrrole Film-Based Micro-Supercapacitors

  • 摘要: 将富电子的并二噻吩单元作为吡咯单体的桥联基团,得到具有四臂活性位点的吡咯单体;再利用液液界面的氧化聚合反应,直接制备得到连续、大面积的超薄聚吡咯膜。通过直接激光刻蚀的方法,制备了微型超级电容器,并研究了其通过循环伏安曲线、阻抗测试、相位角测试等表征得到的电化学性能。结果表明,基于该薄膜的微型超级电容器的面积比电容可达1.10 F/cm2,体积比电容可达68.4 F/cm3,等效串联电阻为4.2 Ω,最大能量密度为9.50 mWh/cm3,最大功率密度为1433 W/cm3

     

  • 图  1  聚2,5-二(1H-吡咯)-噻吩并[3,2-b]噻吩(PPy-3)的合成路线

    Figure  1.  Synthesis of poly(2,5-di(1H-pyrrol-1-yl)thieno[3,2-b]thiophene)(PPy-3)

    图  2  平面PPy-3-MSC的制备流程示意图(基底为玻璃片);i)通过液液界面聚合得到PPy-3膜;ii)将PPy-3膜转移至玻璃基底上;iii)在PPy-3膜上溅射金层;iv)激光蚀刻制备叉指电极;v)将LiCl / PVA凝胶电解质滴在的Au / PPy-3叉指电极上获得PPy-3-MSC

    Figure  2.  Schematic illustration of PPy-3-MSC on a glass substrate; i)Synthesis of PPy-3 film through liquid -liquid polymerization; ii)Transferring PPy-3 film onto a glass substrate; iii)Sputtering Au on PPy-3 film; iv) Preparation of interdigital electrodes by laser scribing; v) Drop casting LiCl/PVA gel electrolyte onto the Au/PPy-3 interdigital electrodes, then after solidification, PPy-3 film-based MSC can be produced

    图  3  (a)Py-3和PPy-3粉末的FTIR光谱图;(b)不同氧化剂制备的PPy-3薄膜的FT-IR光谱;(c)PPy-3薄膜的GIWAXS分析;(d)平面内(Qz=0附近)和平面外(Qxy=0附近)的GIWAXS曲线

    Figure  3.  (a)FT-IR spectra of Py-3 and PPy-3 Powder;(b)FT-IR spectra of PPy-3 films prepared by different oxidant;(c)GIWAXS analysis of the of PPy-3 films;(d) GIWAXS profiles in-plane (near qz=0) and out-of-plane (near qxy=0)

    图  4  (a)PPy-3膜的电子显微镜照片;(b)PPy-3粉末的TGA分析;(c)PPy-3粉末的氮吸附(红色符号)和解吸附(蓝色符号)曲线;(d)由吸附分支计算出的PPy-3粉末的孔径分布曲线

    Figure  4.  (a)SEM image of the PPy-3 film;(b)TGA analysis of PPy-3;(c)Nitrogen adsorption(red symbols)and desorption(blue symbols)isotherms of PPy-3 powder;(d)Pore size distribution curves of PPy-3 powder calculated from the adsorption branch

    图  5  (a)PPy-3膜的UPS谱图;(b)PPy-3膜的固体UV-Vis谱图;(c)(hvα2-hv曲线(曲线切线与基线交点为带隙Ebg=2.75 eV)

    Figure  5.  (a)UPS of PPy-3 film;(b)UV-Vis spectrum of the PPy-3 film;(c)(hvα2-hv curve(The value at the intersection baseline and the tangent of the curve is the bandgap Ebg=2.75 eV)

    图  6  (a)叉指电极在玻璃基板上的光学显微镜照片;(b)不含PVA / LiCl电解质的PPy-3-MSC横截面SEM照片

    Figure  6.  (a)OM image of interdigital finger electrodes patterned on glass substrate;(b)SEM image of cross-section of PPy-3-MSC without PVA/LiCl electrolyte

    图  7  (a)不同扫描速率下PPy-3-MSC在PVA/LiCl凝胶电解质中的CV曲线;(b)面积电容和体积电容的变化曲线;(c)阻抗分析图;(d)阻抗相位角对PVA/LiCl中PPy-3-MSC频率的影响

    Figure  7.  (a)CV curves of the PPy-3-MSC in PVA/LiCl gel electrolyte at different scan rates;(b)Evolution of areal capacitance and volumetric capacitance at different scan rates;(c)Nyquist plot and(d)impedance phase angles on the frequency of the PPy-3-MSC in PVA/LiCl

    图  8  MSC-PPy-3的Ragone曲线图(红色线)

    Figure  8.  Ragone Plots for MSC-PPy-3 in LiCl/PVA electrolyte(red line)

    表  1  PPy-3-MSC与近期报道二维材料的性能对比

    Table  1.   Performance of recent reported 2D materials and PPy-3-MSCs

    ElectrodeCA/(mF·cm−2)CV/(F·cm−3)β/(mV·s−1)EV /(mW·h·cm−3)PV/(W·cm−3)ThicknessElectrolyteReference
    G-CNTCs2.16
    3.93
    1.08
    1.96
    100 A/cm3
    50 A/cm3
    0.16
    2.42
    115(400 V/s)
    135
    NA1 mol/L Na2SO4
    1 mol/L BMIMBF4
    [27]
    RGO0.51 3.1 200.43(1.7 W/cm39.4(0.19 mW·h/cm3NANO[14]
    PiCBA0.10234.1504.7(50 mV/s)1323(1000 V/s)30 nmPVA/H2SO4[30]
    mPPy@GO0.076NA10NANA2 μmPVA/H2SO4[31]
    MPG0.0817.9102.5(10 mV/s)495(0.14 mW·h/cm315 nmPVA/H2SO4[32]
    EG/MXeneNA1840.2 A/cm33.4(0.2 W/cm31.6(1.4 mW·h/cm32.5 μmPVA/H3PO4[33]
    3.26335NANA
    TaS2NA5081058.51.316330 nmPVA/LiCl[34]
    Graphene0.89251.810.2975 μmEMIMNTF2[35]
    Graphene0.338 1)197 1)1023(0.32 W/cm31860 NAIonogel[36]
    MoS2817810NANA450 nmAqueous[37]
    NiCo2S44000NA7 mA/cm2200 μW·h/cm24.4(mW/cm20.5-1.2 mm1 mol/L KOH[38]
    PPy-31.1068.410 9.5(0.34 W/cm31433(0.20 mW·h/cm3~160 nmPVA/LiClThis work
    1)PVA/H2SO4 electrolyte
    下载: 导出CSV
  • [1] ZHUANG X, MAI Y, WU D, et al. Two-dimensional soft nanomaterials: A fascinating world of materials [J]. Advanced Materials,2015,27(3):403-427. doi: 10.1002/adma.201401857
    [2] ZHU J, YANG C, LU C, et al. Two-dimensional porous polymers: From sandwich-like structure to layered skeleton [J]. Accounts of Chemical Research,2018,51(12):3191-3202. doi: 10.1021/acs.accounts.8b00444
    [3] ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials [J]. Science China Chemistry,2019,62(9):1145-1193. doi: 10.1007/s11426-019-9477-y
    [4] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料在能源及转化领域的应用 [J]. 功能高分子学报,2019,32(2):155-177.
    [5] 封博谞, 庄小东. 碳基介熵材料: 理论与实验 [J]. 化学学报,2020,78(9):833-847.
    [6] 康佳玲, 王红星, 邱丰, 等. sp2碳连接的二维聚合物 [J]. 功能高分子学报,2021,34(1):5-25.
    [7] ZHANG W, CUI J, TAO C, et al. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach [J]. Angewandte Chemie International Edition,2009,48(32):5864-5868. doi: 10.1002/anie.200902365
    [8] LIU S, WANG F, DONG R, et al. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size [J]. Advanced Materials,2016,28(38):8365-8370. doi: 10.1002/adma.201603036
    [9] YUAN P, LI Y, BAN Y, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes [J]. Science,2014,346(6215):1356. doi: 10.1126/science.1254227
    [10] JI L, QIN Y, GUI D, et al. Quantifying the exfoliation ease level of 2D materials via mechanical anisotropy [J]. Chemistry of Materials,2018,30(24):8732-8738. doi: 10.1021/acs.chemmater.8b01082
    [11] DING Y, CHEN Y, ZHANG X, et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent [J]. Journal of Materials Chemistry A,2017,139(27):9136-9139.
    [12] DONG R, ZHANG T, FENG, X. Interface-assisted synthesis of 2D materials: Trend and challenges [J]. Chemical Reviews,2018,118(13):6189-6235. doi: 10.1021/acs.chemrev.8b00056
    [13] YU J, LI J, ZHANG W, et al. Synthesis of high-quality two-dimensional materials via chemical vapor deposition [J]. Chemical Science,2015,6:6705-6716. doi: 10.1039/C5SC01941A
    [14] CHMIOLA J, LARGEOT C, TABERNA P L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors [J]. Science,2010,328(5977):480-483. doi: 10.1126/science.1184126
    [15] WU Z, PARVEZ K, FENG X, et al. Photolithographic fabrication of high-performance all-solid-state graphene-based planar micro-supercapacitors with different interdigital fingers [J]. Journal of Materials Chemistry A,2014,2(22):8288-8293. doi: 10.1039/c4ta00958d
    [16] GAO W, SINGH N, SONG L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films [J]. Nature Nanotechnology,2011,6:496-500. doi: 10.1038/nnano.2011.110
    [17] LIU Y, XU J, GAO X, et al. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors [J]. Energy & Environmental Science,2017,10(12):2534-2543.
    [18] PECH D, BRUNET M, DUROU H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon [J]. Nature Nanotechnology,2010,5:651-654. doi: 10.1038/nnano.2010.162
    [19] LIU Z, WU Z, YANG S, et al. Ultraflexible in-plane micro-supercapacitors by direct printing of solution-processable electrochemically exfoliated graphene [J]. Advanced Materials,2016,28(11):2217-2222. doi: 10.1002/adma.201505304
    [20] MIRVAKILI S M, HUNTER I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors [J]. Advanced Materials,2017,29(27):1700671. doi: 10.1002/adma.201700671
    [21] 谷志刚. 液相外延生长法层层组装金属-有机框架薄膜 [J]. 功能高分子学报,2019,32(5):533-540.
    [22] DIAW A K D, GNINGUE-SALL D, YASSAR A, et al. New poly(p-substituted-N-phenylpyrrole)s: Electrosynthesis, electrochemical properties and characterization [J]. Synthetic Metals,2013,179:74-85. doi: 10.1016/j.synthmet.2013.07.016
    [23] LIU D, ZHANG Y, LI G. Nanomorphology in A–D–A type small molecular acceptors-based bulk heterojunction polymer solar cells [J]. Journal of Natural Gas Chemistry,2019,35:104-123.
    [24] BRUNAUER S, DEMING L S, DEMING W E, et al. On a theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society,1940,62(7):1723-1732. doi: 10.1021/ja01864a025
    [25] ZHAO W, ZHUANG X, WU D, et al. Boron-π-nitrogen-based conjugated porous polymers with multi-functions [J]. Journal of Materials Chemistry A,2013,1(44):13878-13884. doi: 10.1039/c3ta13334f
    [26] ZHANG T, HOU Y, DZHAGAN V, et al. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes [J]. Nature Communications,2018,9(1):1140. doi: 10.1038/s41467-018-03444-0
    [27] LIN J, ZHANG C, YAN Z, et al. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance [J]. Nano Letters,2013,13:72-78. doi: 10.1021/nl3034976
    [28] 陈彧. 基于配位聚合物框架的微超级电容器 [J]. 功能高分子学报,2020,33(2):105-107.
    [29] WEI G, NEELAM S, LI S, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films [J]. Nat. Nanotech,2011,6:496-500.
    [30] YANG C, SCHELLHAMMER K S, ORTMANN F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance [J]. Angewandte Chemie International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
    [31] LIU S, GORDIICHUK P, WU Z, et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers [J]. Nature Communications,2015(6):8817.
    [32] WU Z, PARVEZ K, FENG X, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities [J]. Nature Communications,2013(4):2487.
    [33] LI H, HOU Y, WANG F, et al. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene [J]. Advanced Energy Materials,2017,7(4):1601847. doi: 10.1002/aenm.201601847
    [34] WU J, PENG J, YU Z, et al. Acid-assisted exfoliation toward metallic sub-nanopore TaS2 monolayer with high volumetric capacitance [J]. Journal of the American Chemical Society,2018,140(1):493-498. doi: 10.1021/jacs.7b11915
    [35] SHI X, PEI S, ZHOU F, et al. Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility [J]. Energy & Environmental Science,2019(12):1534-1541.
    [36] YE J, TAN H, WU S, et al. Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output [J]. Advanced Materials,2018,30(27):1801384. doi: 10.1002/adma.201801384
    [37] GAO L, YANG S, GAO W, et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films [J]. Small,2013,9(17):2905-2910. doi: 10.1002/smll.201203164
    [38] JIANG Q, KURRA N, XIA C, et al. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy [J]. Advanced Energy Materials,2017,7(1):1601257. doi: 10.1002/aenm.201601257
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  318
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2021-03-02

目录

    /

    返回文章
    返回