高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能性聚醚砜膜的研究进展

张翔 赵伟锋 赵长生

张翔, 赵伟锋, 赵长生. 功能性聚醚砜膜的研究进展[J]. 功能高分子学报, 2021, 34(2): 114-125. doi: 10.14133/j.cnki.1008-9357.20210108001
引用本文: 张翔, 赵伟锋, 赵长生. 功能性聚醚砜膜的研究进展[J]. 功能高分子学报, 2021, 34(2): 114-125. doi: 10.14133/j.cnki.1008-9357.20210108001
ZHANG Xiang, ZHAO Weifeng, ZHAO Changsheng. Progress in Functionalized Polyethersulfone Membranes[J]. Journal of Functional Polymers, 2021, 34(2): 114-125. doi: 10.14133/j.cnki.1008-9357.20210108001
Citation: ZHANG Xiang, ZHAO Weifeng, ZHAO Changsheng. Progress in Functionalized Polyethersulfone Membranes[J]. Journal of Functional Polymers, 2021, 34(2): 114-125. doi: 10.14133/j.cnki.1008-9357.20210108001

功能性聚醚砜膜的研究进展

doi: 10.14133/j.cnki.1008-9357.20210108001
基金项目: 国家自然科学基金(51803131,51673125,51773127,51873115,51803134);国家重点研发专项(2016YFC1103000,2018YFC1106400);四川省科技项目(2017SZ0011,2019YJ0132)
详细信息
    作者简介:

    张翔:张 翔(1986—),男,博士,副研究员,主要研究方向为刺激-响应膜的制备及其在水处理领域的应用。E-mail:zhangxiangscu2011@163.com

    赵长生:张翔,博士,四川大学高分子科学与工程学院,副研究员。主要从事环境敏感材料(包括膜材料或凝胶材料)的设计与制备及其在水处理领域的应用研究。主持和参与包括国家级项目在内的多项科研项目。在J Mater Chem A, J Hazard Mater, Chem Eng J, ACS Appl Mater Inter等学术期刊发表多篇SCI论文

    通讯作者:

    赵长生,E-mail:zhaochsh70@163.com

  • 中图分类号: R318.08

Progress in Functionalized Polyethersulfone Membranes

  • 摘要: 聚醚砜膜作为综合性能优异的聚合物膜材料,在包括血液净化以及水处理在内的多个领域都得到了广泛应用。然而,聚醚砜膜材料也面临本身的血液相容性较差、渗透率和选择性难调节等问题。因此,聚醚砜膜的功能化改性受到了越来越多关注。本文简要介绍了常用的聚醚砜膜改性方法,总结了近年来对聚醚砜膜进行功能化改性的研究进展,包括用于血液净化的抗凝血、抗污染、抗菌功能改性,可控的环境刺激-响应功能膜,以及用于污水处理的具有吸附功能的聚醚砜膜材料。最后展望了功能化聚醚砜膜未来的研究及发展方向。

     

  • 图  1  (a)聚醚砜的分子式;(b)聚醚砜平板膜断面的扫描电镜照片[5];(c)聚醚砜中空纤维膜断面的扫描电镜照片[6]

    Figure  1.  (a) Chemical structure of polyethersulfone; (b) Cross-section SEM image of polyethersulfone flat membrane[5];(c) Cross-section SEM image of polyethersulfone hollow fiber membrane[6]

    图  2  血小板在未改性聚醚砜膜和改性聚醚砜膜上的黏附情况[30]

    (a) SEM images of the platelets adhering onto the membranes, images (A2–G2) were the partial enlarged ones for images (A1–G1); (b) Number of the adhering platelets onto the membranes (from platelet-rich plasma estimated by SEM images)

    Figure  2.  Morphologies of adhered platelets on the naked and modified PES membranes[30]

    图  3  聚醚砜膜上单宁酸-两性离子聚合物涂层的制备方法[37]

    Figure  3.  Schematic of the preparation of antifouling surface by TA-inspired approach[37]

    图  4  (a)改性膜对大肠杆菌和金黄色葡萄球菌的抑菌圈;(b)AgNPs负载膜对大肠杆菌和金黄色葡萄球菌的光密度;(c)荧光染色后的细菌黏附情况[46]

    Figure  4.  (a) Inhibition zone images of the modified membranes towards E. coli and S. aureus; (b) Optical degrees of AgNPs loaded membranes for E. coli and S. aureus; (c) Fluorescence images of the membranes co-cultured with bacteria[46]

    图  5  (a)紫外-可见光、(b)氧化-还原以及(c)近红外敏感聚醚砜膜原理示意图[54-56]

    Figure  5.  Schematic diagrams of (a) UV-Visible light, (b) oxidation-reduction and (c) near-infrared sensitive polyethersulfone membranes[54-56]

    图  6  抗凝血改性聚醚砜包裹脲酶改性石墨烯核-壳结构小球的制备示意图[69]

    Figure  6.  Schematic diagram of PES enwrapped urease modified graphene oxide core-shell particle with anti-coagulation performance[69]

  • [1] ZHAO C S, XUE J M, RAN F, et al. Modification of polyethersulfone membranes: A review of methods [J]. Progress in Materials Science,2013,58(1):76-150. doi: 10.1016/j.pmatsci.2012.07.002
    [2] LIAO Y, LOH C H, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications [J]. Progress in Polymer Science,2018,77:69-94. doi: 10.1016/j.progpolymsci.2017.10.003
    [3] SARKAR S, CHAKRABORTY S. Nanocomposite polymeric membrane a new trend of water and wastewater treatment: A short review [J]. Groundwater for Sustainable Development,2021,12:100533. doi: 10.1016/j.gsd.2020.100533
    [4] IRFAN M, IDRIS A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques [J]. Materials Science and Engineering C,2015,56:574-592. doi: 10.1016/j.msec.2015.06.035
    [5] TANG M, XUE J M, YAN K, et al. Heparin-like surface modification of polyethersulfone membrane and its biocompatibility [J]. Journal of Colloid and Interface Science,2012,386(1):428-440. doi: 10.1016/j.jcis.2012.07.076
    [6] MA L, SU B H, CHENG C, et al. Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo [J]. Journal of Membrane Science,2014,470:90-101. doi: 10.1016/j.memsci.2014.07.030
    [7] XIE J H, ZHANG W G. Research and development of smart material and structure [J]. Chinese Journal of Sensors and Actuators,2004,17(4):164-167.
    [8] LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water [J]. Nature,2012,488(7411):313-319. doi: 10.1038/nature11477
    [9] ULBRICHT M. Advanced functional polymer membranes [J]. Polymer,2006,47(7):2217-2262. doi: 10.1016/j.polymer.2006.01.084
    [10] KHAYET M, GARCIA-PAYO M C. X-ray diffraction study of polyethersulfone polymer, flat-sheet and hollow fibers prepared from the same under different gas-gaps [J]. Desalination,2009,245(1-3):494-500. doi: 10.1016/j.desal.2009.02.013
    [11] BARTH C, GONÇALVES M C, PIRES A T N, et al. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance [J]. Journal of Membrane Science,2000,169(2):287-299. doi: 10.1016/S0376-7388(99)00344-0
    [12] van der BRUGGEN B. Chemical modification of polyethersulfone nanofiltration membranes: A review [J]. Journal of Applied Polymer Science,2009,114(1):630-642. doi: 10.1002/app.30578
    [13] KOH M, CLARK M A, HOWE K J. Filtration of lake natural organic matter: Adsorption capacity of a polypropylene microfilter [J]. Journal of Membrane Science,2005,256(1-2):169-175.
    [14] WERNER C, JACOBASCH H J, REICHELT G. Surface characterization of hemodialysis membranes based on streaming potential measurements [J]. Journal of Biomaterials Science: Polymer Edition,1995,7(1):61-76.
    [15] SAMTLEBEN W, DENGLER C, REINHARDT B, et al. Comparison of the new polyethersulfone high-flux membrane DIAPES (R) HF800 with conventional high-flux membranes during on-line haemodiafiltration [J]. Nephrology Dialysis Transplantation,2003,18(11):2382-2386. doi: 10.1093/ndt/gfg410
    [16] LIU Z B, DENG X P, WANG M, et al. BSA-modified polyethersulfone membrane: Preparation, characterization and biocompatibility [J]. Journal of Biomaterials Science: Polymer Edition,2009,20(3):377-397. doi: 10.1163/156856209X412227
    [17] WANG Z, WANG Y. Highly permeable and robust responsive nanoporous membranes by selective swelling of triblock terpolymers with a rubbery block [J]. Macromolecules,2016,49(1):182-191. doi: 10.1021/acs.macromol.5b02275
    [18] LIU Z, WANG W, XIE R, et al. Stimuli-responsive smart gating membranes [J]. Chemical Society Reviews,2016,45(3):460-474. doi: 10.1039/C5CS00692A
    [19] LU D, ZOU H, GUAN R, et al. Sulfonation of polyethersulfone by chlorosulfonic acid [J]. Polymer Bulletin,2005,54(1):21-28.
    [20] GUIVER M D, CROTEAU S, HAZLETT J D, et al. Synthesis and characterization of carboxylated polysulfones [J]. British Polymer Journal,1990,23(1-2):29-39. doi: 10.1002/pi.4980230107
    [21] WANG Y Q, WANG T, SU Y L, et al. Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes [J]. Journal of Membrane Science,2006,270(1):108-114.
    [22] BARZIN J, FENG C, KHULBE K C, et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy [J]. Journal of Membrane Science,2004,237(1):77-85.
    [23] MURALI R S, SRIDHAR S, SANKARSHANA T, et al. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes [J]. Industrial & Engineering Chemistry Research,2010,49(14):6530-6538.
    [24] MA X, SU Y, SUN Q, et al. Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol) [J]. Journal of Membrane Science,2007,300(1):71-78.
    [25] WANG D, ZOU W, LI L, et al. Preparation and characterization of functional carboxylic polyethersulfone membrane [J]. Journal of Membrane Science,2011,374(1):93-101.
    [26] KANG M S, CHOI Y J, CHOI I J, et al. Electrochemical characterization of sulfonated poly(arylene ether sulfone) (S-PES) cation-exchange membranes [J]. Journal of Membrane Science,2003,216(1):39-53.
    [27] DENG B, LI J, HOU Z, et al. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence [J]. Radiation Physics and Chemistry,2008,77(7):898-906. doi: 10.1016/j.radphyschem.2008.02.008
    [28] XIANG T, WANG L R, MA L, et al. From commodity polymers to functional polymers [J]. Scientific Reports,2014,4(1):4604.
    [29] QIN H, SUN C C, HE C, et al. High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization [J]. Journal of Membrane Science,2014,468:172-183. doi: 10.1016/j.memsci.2014.06.006
    [30] LI S S, XIE Y, XIANG T, et al. Heparin-mimicking polyethersulfone membranes-hemocompatibility, cytocompatibility, antifouling and antibacterial properties [J]. Journal of Membrane Science,2016,498:135-146. doi: 10.1016/j.memsci.2015.09.054
    [31] WANG C, XU Y, SUN S D, et al. Post-functionalization of carboxylic polyethersulfone composite membranes [J]. Composites Science and Technology,2017,156:48-60.
    [32] JI H F, JIN L Q, SONG X, et al. Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction [J]. Journal of Membrane Science,2019,581:373-382. doi: 10.1016/j.memsci.2019.03.082
    [33] ZHOU H, CHENG C, QIN H, et al. Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules [J]. Polymer Chemistry,2014,5(11):3563-3575. doi: 10.1039/c4py00136b
    [34] HAN Z Y, CHENG C, ZHANG L, et al. Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization [J]. Desalination,2014,349:80-93. doi: 10.1016/j.desal.2014.06.025
    [35] XIANG T, YUE W W, WANG R, et al. Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility [J]. Colloids and Surfaces B: Biointerfaces,2013,110:15-21. doi: 10.1016/j.colsurfb.2013.04.034
    [36] XIANG T, YUE W W, WANG R, et al. Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization [J]. Journal of Membrane Science,2015,476:234-242. doi: 10.1016/j.memsci.2014.11.045
    [37] CHEN S Q, XIE Y, XIAO T, et al. Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface [J]. Chemical Engineering Journal,2018,337:122-132. doi: 10.1016/j.cej.2017.12.057
    [38] SALIMI E, GHAEE A, ISMAIL A F. Performance and antifouling enhancement of polyethersulfone hollow fiber membranes incorporated with highly hydrophilic hydroxyapatite nanoparticles [J]. Rsc Advances,2016,6(50):44480-44488. doi: 10.1039/C6RA05451J
    [39] ZHU L J, ZHU L P, ZHAO Y F, et al. Anti-fouling and anti-bacterial polyethersulfone membranes quaternized from the additive of poly(2-dimethylamino ethyl methacrylate) grafted SiO2 nanoparticles [J]. Journal of Materials Chemistry A,2014,2(37):15566-15574. doi: 10.1039/C4TA03199G
    [40] WU P, TANG X, LIU Y S, et al. An alginate active layer of polyether sulfone membrane suppresses algae-fouling in repeated filtration of Chlorella vulgaris for a higher recovery of water permeation flux [J]. Environmental Science: Water Research & Technology,2019,5(12):2162-2171.
    [41] ZHANG G F, GAO F, ZHANG Q H, et al. Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers [J]. Rsc Advances,2016,6(9):7532-7543. doi: 10.1039/C5RA23544H
    [42] SUSANTO H, BALAKRISHNAN M, ULBRICHT M. Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes [J]. Journal of Membrane Science,2007,288(1-2):157-167. doi: 10.1016/j.memsci.2006.11.013
    [43] WANG J X, PENG C R, CHEN H, et al. Fabrication of hemocompatible polyethersulfone derivatives by one-step radiation-induced homogeneous polymerization [J]. Materials Today Communications,2020,25:101548. doi: 10.1016/j.mtcomm.2020.101548
    [44] WANG R, XIANG T, ZHAO W F, et al. A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications [J]. Materials Science and Engineering C,2016,59:556-564. doi: 10.1016/j.msec.2015.10.058
    [45] ZHAO S, HUANG L C, TONG T Z, et al. Antifouling and antibacterial behavior of polyethersulfone membrane incorporating polyaniline@ silver nanocomposites [J]. Environmental Science: Water Research & Technology,2017,3(4):710-719.
    [46] HE M, WANG Q, ZHAO W F, et al. A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored via a layer-by-layer thiol-ene click reaction [J]. Journal of Materials Chemistry B,2018,6(23):3904-3913. doi: 10.1039/C8TB00937F
    [47] XING J, WANG Q, HE T, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for antimicrobial [J]. ACS Applied Bio Materials,2018,1(5):1236-1243. doi: 10.1021/acsabm.8b00106
    [48] XIE Y, CHEN S Q, QIAN Y H, et al. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property [J]. Materials Science and Engineering C,2018,84:52-59. doi: 10.1016/j.msec.2017.11.036
    [49] JIN L Q, SHI Z Q, ZHANG X, et al. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release [J]. Journal of Materials Chemistry B,2019,7(36):5520-5527. doi: 10.1039/C9TB01199D
    [50] ZHAO C S, NIE S Q, TANG M, et al. Polymeric pH-sensitive membranes: A review [J]. Progress in Polymer Science,2011,36(11):1499-1520. doi: 10.1016/j.progpolymsci.2011.05.004
    [51] ZOU W, HUANG Y, LUO J, et al. Poly (methyl methacrylate-acrylic acid-vinyl pyrrolidone) terpolymer modified polyethersulfone hollow fiber membrane with pH sensitivity and protein antifouling property [J]. Journal of Membrane Science,2010,358(1-2):76-84. doi: 10.1016/j.memsci.2010.04.028
    [52] LI H J, LIAO J Y, XIANG T, et al. Preparation and characterization of pH- and thermo-sensitive polyethersulfone hollow fiber membranes modified with P(NIPAAm-MAA-MMA) terpolymer [J]. Desalination,2013,309:1-10. doi: 10.1016/j.desal.2012.09.008
    [53] ZHANG X, ZHOU J K, WEI R, et al. Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids [J]. Journal of Membrane Science,2017,535:158-167. doi: 10.1016/j.memsci.2017.04.044
    [54] SHI W B, DENG J, QIN H, et al. Poly(ether sulfone) membranes with photo-responsive permeability [J]. Journal of Membrane Science,2014,455:357-367. doi: 10.1016/j.memsci.2014.01.005
    [55] SHI W B, ZHANG L J, DENG J, et al. Redox-responsive polymeric membranes via supermolecular host-guest interactions [J]. Journal of Membrane Science,2015,480:139-152. doi: 10.1016/j.memsci.2015.01.050
    [56] WEI R, GUO J B, JIN L Q, et al. Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes [J]. Journal of Materials Chemistry A,2020,8(18):8934-8948. doi: 10.1039/D0TA02154G
    [57] YUE W W, XIANG T, ZHAO W F, et al. Preparation and characterization of pH-sensitive polyethersulfone membranes blended with poly(methyl methacrylate-co-maleic anhydride) copolymer [J]. Separation Science and Technology,2013,48(13):1941-1953. doi: 10.1080/01496395.2013.793200
    [58] ZHANG X, LIU Y, SUN C C, et al. Graphene oxide-based polymeric membranes for broad water pollutant removal [J]. RSC Advances,2015,5(122):100651-100662. doi: 10.1039/C5RA20243D
    [59] CHEN S Q, LV C Y, HAO K, et al. Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation [J]. Journal of Colloid and Interface Science,2019,538:648-659. doi: 10.1016/j.jcis.2018.12.038
    [60] LV C Y, CHEN S Q, XIE Y, et al. Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal [J]. Journal of Colloid and Interface Science,2019,556:492-502. doi: 10.1016/j.jcis.2019.08.062
    [61] XU Y T, YUAN D D, BAO J X, et al. Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation [J]. Journal of Materials Chemistry A,2018,6(27):13359-13372. doi: 10.1039/C8TA04005B
    [62] WU K K, YANG W F, JIAO Y P, et al. A surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin [J]. Journal of Materials Chemistry B,2017,5(29):5763-5773. doi: 10.1039/C7TB00643H
    [63] ZHAO C S, WEI Q R, YANG K G, et al. Preparation of porous polysulfone beads for selective removal of endocrine disruptors [J]. Separation and Purification Technology,2004,40(3):297-302. doi: 10.1016/j.seppur.2004.03.007
    [64] ZHANG X, CHENG C, ZHAO J, et al. Polyethersulfone enwrapped graphene oxide porous particles for water treatment [J]. Chemical Engineering Journal,2013,215:72-81.
    [65] JIANG X, XIANG T, XIE Y, et al. Functional polyethersulfone particles for the removal of bilirubin [J]. Journal of Materials Science-Materials in Medicine,2016,27(2):28.
    [66] WANG Z J, SUN W, WEI Z W, et al. Selective potassium uptake via biocompatible zeolite-polymer hybrid microbeads as promising binders for hyperkalemia [J]. Bioactive Materials,2021,6(2):543-558. doi: 10.1016/j.bioactmat.2020.08.032
    [67] CHEN S Q, ZHANG X, HUANG H, et al. Core@ shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater [J]. Journal of Environmental Chemical Engineering,2017,5(2):1732-1743. doi: 10.1016/j.jece.2017.03.013
    [68] ZHOU J K, CHEN S Q, XU S, et al. Graphene oxide-based polyethersulfone core-shell particles for dye uptake [J]. RSC Advances,2016,6(104):102389-102397. doi: 10.1039/C6RA18950D
    [69] ZHANG J, SHI Z, HE C, et al. Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification [J]. International Journal of Biological Macromolecules,2020,156:1503-1511. doi: 10.1016/j.ijbiomac.2019.11.197
  • 加载中
图(6)
计量
  • 文章访问数:  677
  • HTML全文浏览量:  263
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回