-
有机太阳能电池具有轻便、柔性、可溶液加工和大面积制备等优势,作为新一代光伏器件备受关注[1, 2]。有机半导体材料的激子结合能高达数百毫电子伏特,不利于激子分离与载流子传输,通过调节本体异质结(BHJ)中给/受体材料的微相分离程度并形成双连续的网络结构,仍然是提升有机太阳能电池光电性能的关键所在[3, 4]。溶液法制备活性层薄膜这一过程成膜较快,有机分子尤其是给体高分子材料无法在短时间内组装成理想的相分离与自富集域,限制了有机太阳能电池的器件性能[5, 6]。
针对此挑战,2020年底上海交通大学钟洪亮教授团队开发了一种氟碳溶剂热浸泡的后处理方法(图1(a))[7]。以氟碳溶剂作为热传导介质为活性层薄膜提供快速且均匀的热量,加速给/受体分子的运动与重排。此外,氟碳溶剂同时具有疏水与疏油的特性,对有机光伏材料和各功能层材料的溶解度较低,而与有机半导体材料的加工溶剂具有温度依赖的互溶性,达到临界温度后,氟碳溶剂与旋涂后活性层薄膜中残留的溶剂融合成一相,该混合溶剂对聚合物给体和小分子受体材料具有选择性地溶解与再析出特性,加速材料分子的重排。在均匀快速热传导和混合溶剂(氟碳溶剂/薄膜残留溶剂)的协同作用下,通过较低的温度和较短的时间的氟碳溶剂热浸泡,能够有效调控活性层薄膜活性层的形貌,获得高效的给/受体材料的双连续互穿网络。
图 1 (a) 氟碳溶剂热浸泡示意图;(b) 三种氟碳溶剂的分子结构以及与氯仿/氯萘混溶情况;(c) 不同热处理方法下器件性能随处理温度的变化曲线;(d) 热浸泡处理前后薄膜表面AFM形貌图[7]
Figure 1. (a) Schematic diagram of hot fluorous solvent soaking; (b) Chemical structure of three fluorous solvents and their miscibility with chloroform/1-chloronaphthalene; (c) Device performance versus processing temperature under various post-treatments; (d) AFM topography of the film surface before and after fluorous solvent soaking[7]
如表1所示,在氯仿/氯萘中制备的PM6:Y6体系,经90 °C热退火5 min后的光电转化效率(PCE)为15.96%。将活性层放入热的氟碳萘烷(PFD)溶剂中(氟碳溶剂热浸泡法),其PCE随温度的变化与热退火时一致,都是在90 °C时获得最高PCE,但是,后处理时间缩短为2 min,PCE略有提高。这是因为PFD在100 °C仍然不与氯仿/氯萘混溶(图1(b)),PFD热溶剂浸泡仅能提供更均匀和快速地热退火。与PFD不同,氟碳甲基环己烷(PFMCH)与氯仿/氯萘的临界混溶温度下限在52 °C,而氟碳甲苯(PFT)与氯仿/氯萘在室温以上均混溶(图1(b))。PFMCH热浸泡温度超过50 °C后,PCE随温度升高而增长的曲线出现明显拐点,而PFT在更低的热溶剂温度下便能够显著提升器件的PCE(图1(c))。这归功于氟碳溶剂与氯仿/氯萘残余溶剂混合后形成的均一相,在活性层内部渗透,选择性地加快分子重组,如图1(d)所示,获得了纤维状的形貌,从而提升器件性能。器件性能的提升来源于:受体小分子Y6重新排列成更有序的结构,使热溶剂浸泡处理后的器件的光响应出现小幅红移现象,提升了光电流。PM6组装成纤维网状,从而使活性层载流子迁移率更高,自由电荷复合减少,器件的填充因子更高。
Post-treatments Voc/V Jsc/mA·cm−2 FF PCE/% No 0.876 24.18 0.718 15.21 TA (90 °C, 5 min) 0.854 25.51 0.733 15.96 PFD (90 °C, 2 min) 0.861 25.30 0.740 16.12 PFMCH (60 °C, 1 min) 0.863 25.35 0.748 16.37 PFT (80 °C, 0.5 min) 0.849 26.09 0.746 16.52 此外,氟碳溶剂热浸泡方法在各种有机太阳能电池器件,包括全小分子和全聚合物材料体系,都能够有效改善活性层形貌并提升器件性能,说明该方法具有优异的普适性。氟碳溶剂热浸泡方法加工温度低,处理时间短,均一性好,能够有效改善有机活性层薄膜的形貌,有望用于大面积和柔性有机光伏器件的制备。
普适的聚合物本体异质结形貌工程策略:氟碳溶剂热浸泡
Universal Morphology Engineering for Organic Bulk Heterojunction: Hot Fluorous Solvent Soaking
-
摘要: 聚合物本体异质结太阳能电池的光电转换效率与日俱增,获取理想的给/受体材料双连续互穿网络结构仍然是提升器件性能的关键。近期,上海交通大学钟洪亮团队和合作者发展了一种氟碳溶剂热浸泡后处理策略,优化了活性层薄膜的形貌。氟碳溶剂热浸泡后处理过程能够对活性层薄膜进行快速且均匀的热退火,并且在临界温度以上,当所选的氟碳溶剂与薄膜加工残留溶剂互溶成一相时,该混合溶剂将进一步促进薄膜中给/受体材料的再组装过程,形成更有序的纤维状结构,载流子传输效率更高,吸收光谱也有所红移,光电转换效率显著提升。该方法适用于多种给/受体材料组合,包括聚合物/小分子体系、全聚合物体系、全小分子体系,经短时间较低温度的热浸泡处理便能改善薄膜的形貌,获得优异的光电转换性能。Abstract: The power conversion efficiency of polymer solar cells based on bulk heterojunction is gradually increasing. However, to achieve an ideal donor/acceptor morphology with bicontinuous and interpenetrating network structure is still challenge. Recently, Hongliang Zhong group at Shanghai Jiaotong University and the coworkers developed a new post-treatment strategy, namely hot fluorous solvent soaking (HFSS), to optimize the morphology of the active layer. The treatment of HFSS can anneal the active layer quickly and uniformly. When the selected fluorous solvent is miscible with the residue of processing solvent above upper critical solution temperature, the mixed solvent will further promote the reorganization of the donor/acceptor materials in the film, thereby forming a highly ordered fibrous structure. Consequently, the device shows higher carrier mobility and slightly red-shift absorption spectrum, providing a improved photovoltaic performance. This strategy performed with short processing time at relatively temperature is suitable for various combinations of donor/acceptor materials, including polymer/small-molecule systems, all-polymer and all-small-molecule systems.
-
Key words:
- organic solar cell /
- bulk heterojunction /
- post-treatment /
- fluorous solvent /
- morphology engineering
-
图 1 (a) 氟碳溶剂热浸泡示意图;(b) 三种氟碳溶剂的分子结构以及与氯仿/氯萘混溶情况;(c) 不同热处理方法下器件性能随处理温度的变化曲线;(d) 热浸泡处理前后薄膜表面AFM形貌图[7]
Figure 1. (a) Schematic diagram of hot fluorous solvent soaking; (b) Chemical structure of three fluorous solvents and their miscibility with chloroform/1-chloronaphthalene; (c) Device performance versus processing temperature under various post-treatments; (d) AFM topography of the film surface before and after fluorous solvent soaking[7]
Post-treatments Voc/V Jsc/mA·cm−2 FF PCE/% No 0.876 24.18 0.718 15.21 TA (90 °C, 5 min) 0.854 25.51 0.733 15.96 PFD (90 °C, 2 min) 0.861 25.30 0.740 16.12 PFMCH (60 °C, 1 min) 0.863 25.35 0.748 16.37 PFT (80 °C, 0.5 min) 0.849 26.09 0.746 16.52 -
[1] LEE H, PARK C, SIN D H, et al. Recent advances in morphology optimization for organic photovoltaics [J]. Adv Mater,2018:e1800453. [2] ZHANG Y, WANG Y, XIE Z, et al. Preparation of non-fullerene acceptors with a multi-asymmetric configuration in a one-pot reaction for organic solar cells [J]. Journal of Materials Chemistry C,2020,8(48):17229-36. doi: 10.1039/D0TC04749J [3] LIAO C Y, CHEN Y, LEE C C, et al. Processing strategies for an organic photovoltaic module with over 10% efficiency [J]. Joule,2020,4(1):189-206. doi: 10.1016/j.joule.2019.11.006 [4] SHAN T, HONG Y, ZHU L, et al. Achieving optimal bulk heterojunction in all-polymer solar cells by sequential processing with nonorthogonal solvents [J]. ACS Appl Mater Interfaces,2019,11(45):42438-46. doi: 10.1021/acsami.9b15476 [5] SCHWARZ K N, GERAGHTY P B, MITCHELL V D, et al. Reduced recombination and capacitor-like charge buildup in an organic heterojunction [J]. J Am Chem Soc,2020,142(5):2562-71. doi: 10.1021/jacs.9b12526 [6] DING K, SHAN T, XU J, et al. A perylene diimide-containing acceptor enables high fill factor in organic solar cells [J]. Chem Commun (Camb),2020,56(77):11433-6. doi: 10.1039/D0CC04297H [7] SHAN T, ZHANG Y, WANG Y, et al. Universal and versatile morphology engineering via hot fluorous solvent soaking for organic bulk heterojunction [J]. Nat Commun,2020,11(1):5585. doi: 10.1038/s41467-020-19429-x -