高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有自修复和形状记忆功能的聚氨酯光敏树脂

孔思予 杨冲冲 郑震 王新灵

孔思予, 杨冲冲, 郑震, 王新灵. 具有自修复和形状记忆功能的聚氨酯光敏树脂[J]. 功能高分子学报, 2021, 34(4): 369-378. doi: 10.14133/j.cnki.1008-9357.20201223001
引用本文: 孔思予, 杨冲冲, 郑震, 王新灵. 具有自修复和形状记忆功能的聚氨酯光敏树脂[J]. 功能高分子学报, 2021, 34(4): 369-378. doi: 10.14133/j.cnki.1008-9357.20201223001
KONG Siyu, YANG Chongchong, ZHENG Zhen, WANG Xinling. Photosensitive Polyurethane Resin with Self-Healing and Shape-Memory Functions[J]. Journal of Functional Polymers, 2021, 34(4): 369-378. doi: 10.14133/j.cnki.1008-9357.20201223001
Citation: KONG Siyu, YANG Chongchong, ZHENG Zhen, WANG Xinling. Photosensitive Polyurethane Resin with Self-Healing and Shape-Memory Functions[J]. Journal of Functional Polymers, 2021, 34(4): 369-378. doi: 10.14133/j.cnki.1008-9357.20201223001

具有自修复和形状记忆功能的聚氨酯光敏树脂

doi: 10.14133/j.cnki.1008-9357.20201223001
详细信息
    作者简介:

    孔思予(1996—),女,河南济源人,硕士,主要研究方向为聚氨酯改性树脂。E-mail:kongsiyu505@qq.com

    通讯作者:

    王新灵,E-mail:xlwang@sjtu.edu.cn

  • 中图分类号: TQ322.4

Photosensitive Polyurethane Resin with Self-Healing and Shape-Memory Functions

  • 摘要: 利用封端剂的动态可逆特性,设计、制备出含有多处大位阻脲键和结晶性软段的光敏聚氨酯丙烯酸酯(PUTA)。光固化后的材料具有较高的弹性、良好的力学性能、自修复性能和形状记忆性能。经热处理修复后,试样的修复效率达70%(拉伸强度3.58 MPa,伸长率250%);软段的结晶转变使材料具有重复塑形以及形状记忆性能,并可在升温后快速完成形状恢复。制备的材料具有热刺激下的自修复与形状记忆的智能响应特性,有望作为光固化3D打印材料,在定制化的智能穿戴设备及生物医用材料领域发挥作用。

     

  • 图  1  含大位阻脲键的预聚体PUTA的合成路线

    Figure  1.  Synthetic route of prepolymers PUTA with bulky group urea bond

    图  2  (a)t-TMDI的1H-NMR谱图;(b)Mono-t-PU与PUTA的红外谱图

    Figure  2.  (a) 1H-NMR spectrum of t-TMDI; (b) FT-IR spectra of Mono-t-PU and PUTA

    图  3  PUTA试样的(a)TGA曲线与(b)DSC曲线

    Figure  3.  (a) TGA curves and (b) DSC curves of PUTA samples

    图  4  PUTA试样的动态力学性能曲线

    Figure  4.  DMA curves of PUTA

    图  5  软段含量对光敏树脂PUTA拉伸性能的影响

    Figure  5.  Effect of molecular weight of soft segment on tensile properties of PUTA

    图  6  (a)脲键动态解离过程的变温红外光谱图;(b)大位阻脲键动态解离反应示意图

    Figure  6.  (a)Variable FT-IR spectra of dynamic dissociation of urea bond; (b) Schematic diagram of dynamic dissociation mechanism of bulky urea bond

    图  7  PUTA-3000薄膜划痕在热台偏光显微镜下的修复过程

    Figure  7.  Polarizing optical microscope photographs of PUTA-3000 film during scratch healing process

    图  8  (a~c)PUTA试样与(d~f)PUBA 试样的断面形貌SEM照片:(a,d)试样切断断面,(b,e)正常试样拉伸后断裂的断面,(c,f)试样经热修复再次拉伸后的断面;(g)PUBA所用大位阻封端剂的分子结构示意图;(h)PUTA-3000样条热修复后拉伸过程及拉伸曲线

    Figure  8.  SEM images of fracture of (a–c) PUTA samples and (d–f) PUBA samples: (a, d) Cut-off section of the samples, (b, e) sections of normal specimens after tensile test; (c, f) tensile sections of samples after self-healing; (g) Structure diagram of bulky blocking agents; (h) Tensile test process and strain-stress curves of self-healing sample PUTA-3000

    图  9  脲键的动态可逆交换以及材料的修复机理示意图

    Figure  9.  Schematic diagram of dynamic reversible exchange of urea bond and self-healing polymers

    图  10  (a)温度对修复效果的影响;(b)PUTA-3000与(c)PUTA-2000在80 ℃下,修复时间对试样的修复效果影响;(d)不同修复条件下PUTA-3000试样的修复效率

    Figure  10.  (a) Effect of temperature on the self-healing performance; Effect of healing time on the self-healing performance of (b) PUTA-3000 and (c) PUTA-2000 at 80 ℃; (d) Effect of different conditions on healing efficiency

    图  11  PUTA的形状记忆性能

    Figure  11.  Shape memory performance photos of PUTA

    表  1  软段含量对PUTA形状记忆性能的影响

    Table  1.   Effect of soft segment content on shape memory performance

    SampleFixed time/h
    (25 ℃)
    Recovered time/h
    (60 ℃)
    Recovered time/h
    (80 ℃)
    PUTA-20001221
    PUTA-3000610.8
    PUTA-400030. 50.1
    下载: 导出CSV
  • [1] QUAN H, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges [J]. Bioactive Materials,2020,5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
    [2] MUKHERJEE S, HILL M R, SUMERLIN B S. Self-healing hydrogels containing reversible oxime crosslinks [J]. Soft Matter,2015,11(30):6152-6161. doi: 10.1039/C5SM00865D
    [3] DAVAMI K, MEHRDAD M, ORGAN M, et al. Additively manufactured self-healing structures with embedded healing agent reservoirs [J]. Scientific Reports,2019,9(1):1-8.
    [4] MARTIN-GALLEGO M, ROMASANTA L J, HERNANDEZ M, et al. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review [J]. Materials Horizons,2020,7(11):2882-2902. doi: 10.1039/D0MH00535E
    [5] WANG Z, LU X, SUN S, et al. Preparation, characterization and properties of intrinsic self-healing elastomers [J]. Journal of Materials Chemistry B,2019,7(32):4876-4926. doi: 10.1039/C9TB00831D
    [6] YANG L, LU X, WANG Z, et al. Diels-Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function [J]. Polymer Chemistry,2018,9(16):2166-2172. doi: 10.1039/C8PY00162F
    [7] 王丽, 王新灵. Diels-Alder反应在自修复聚合物材料中的研究进展 [J]. 功能高分子学报,2014,27(4):453-463.

    WANG L, WANG X L. Research progress in self-healing materials based on Diels-Alder reaction [J]. Journal of Functional Polymers,2014,27(4):453-463.
    [8] OUYANG C, ZHAO C, WEI L, et al. Super-tough, self-healing polyurethane based on Diels-Alder bonds and dynamic zinc-ligand interactions [J]. Macromolecular Materials and Engineering,2020,305(6):2000089.
    [9] WAN T, CHEN D. Synthesis and properties of self-healing waterborne polyurethanes containing disulfide bonds in the main chain [J]. Journal of Materials Science,2017,52(1):197-207. doi: 10.1007/s10853-016-0321-x
    [10] KUANG X, CHEN K J, DUNN C K, et al. 3D Printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing [J]. ACS Applied Materials & Interfaces,2018,10(8):7381-7388.
    [11] ZHAO J, XU R, LUO G X, et al. A self-healing, remoldable and biocompatible crosslinked polysiloxane elastomer. [J]. Journal of Materials Chemistry B,2016,4(5):982-989. doi: 10.1039/C5TB02036K
    [12] RAJEEV K K, NAM J, KIM E, et al. A self-healable polymer binder for Si anodes based on reversible Diels-Alder chemistry [J]. Electrochimica Acta,2020,364:137311. doi: 10.1016/j.electacta.2020.137311
    [13] ZHANG Y, YIN X, ZHENG M, et al. 3D printing of thermoreversible polyurethanes with targeted shape memory and precise in situ self-healing properties [J]. Journal of Materials Chemistry A,2019,7(12):6972-6984. doi: 10.1039/C8TA12428K
    [14] 高龙, 俞慧涛, 王健, 等. 基于氢键交联的低温自修复聚合物 [J]. 功能高分子学报,2020,33(6):547-553.

    GAO L, YU H T, WANG J, et al. Low-temperature self-healing polymer based on hydrogen bonding crosslinking [J]. Journal of Functional Polymers,2020,33(6):547-553.
    [15] LI X, YU R, HE Y, et al. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing [J]. ACS Macro Letters,2019,8(11):1511-1516. doi: 10.1021/acsmacrolett.9b00766
    [16] YANG X, LIU G, PENG L, et al. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture [J]. Advanced Functional Materials,2017,27(40):1703174.
    [17] BRUNSVELD L, FOLMER B J B, MEIJER E W, et al. Supramolecular polymers [J]. Chemical Reviews,2001,101(12):4071-4098. doi: 10.1021/cr990125q
    [18] REISCH A, ROGER E. On the benefits of rubbing salt in the cut: Self-healing of saloplastic PAA/PAH compact polyelectrolyte complexes [J]. Advanced Materials,2014,26(16):2547-2551. doi: 10.1002/adma.201304991
    [19] HUANG Y, LAWRENCE P G, LAPITSKY Y. Self-assembly of stiff, adhesive and self-healing gels from common polyelectrolytes [J]. Langmuir,2014,30(26):7771-7779. doi: 10.1021/la404606y
    [20] WANG S Y, URBAN M W. Self-healing polymers [J]. Nature Reviews Materials,2020,5(8):562-583. doi: 10.1038/s41578-020-0202-4
    [21] CHEN X X, ZHONG Q Y, WANG S J, et al. Progress in dynamic covalent polymers [J]. Acta Polymerica Sinica,2019,50(5):469-484.
    [22] YING H, ZHANG Y, CHENG J. Dynamic urea bond for the design of reversible and self-healing polymers [J]. Nature Communications,2014,5(1):1-9.
    [23] ZHANG Y, YIN X, ZHENG M, et al. 3D printing of thermo-reversible polyurethanes with targeted shape memory and precise in situ self-healing properties [J]. Journal of Materials Chemistry A,2019,7(8):6972-6984.
    [24] FANG Z, ZHENG N, ZHAO Q, et al. Healable, reconfigurable, reprocessable thermoset shape memory polymer with highly tunable topological rearrangement kinetics [J]. ACS Applied Materials & Interfaces,2017,9(27):22077-22082.
    [25] LI F, HOU J, ZHU W, et al. Crystallinity and morphology of segmented polyurethanes with different soft-segment length [J]. Journal of Applied Polymer Science,1996,62(4):631-638. doi: 10.1002/(SICI)1097-4628(19961024)62:4<631::AID-APP6>3.0.CO;2-U
    [26] SONG M, WANG Y M, LIANG X Y, et al. Functional materials with self-healing properties: A review [J]. Soft Matter,2019,15(33):6615-6625. doi: 10.1039/C9SM00948E
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  238
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-04-21
  • 刊出日期:  2021-07-08

目录

    /

    返回文章
    返回