-
氰酸酯(CE)树脂因交联密度大且含有大量刚性的苯环和三嗪环结构而具有优异的高低温稳定性[1-3],固化后的CE树脂形成密集的对称三嗪环结构,使材料成为一个大的共振体,固化物具有优良的介电性能,介电常数和介电损耗因子比环氧树脂与双马来酰亚胺树脂的相应值低[4-6]。
纯CE固化温度高且呈脆性,常规结构的CE树脂阻燃性能不理想,限制了其在电子信息材料和航空航天领域的应用。CE树脂的阻燃性研究已有相关报道,采用无卤含磷阻燃剂改性氰酸酯是其中方法之一,具有环保友好的特点。9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)是一种活性的非卤阻燃剂,已应用于环氧树脂、聚氨酯泡沫和工程塑料等高分子材料的阻燃[7, 8]。DOPO与双马来酰亚胺、席夫碱或氰酸酯等的加成物共混改性氰酸酯树脂,可提高树脂阻燃性至UL-94V-0等级,且共混树脂的介电常数和介电损耗低于纯氰酸酯树脂的相应值[9-11]。苯膦酰二氯也常被用作有机磷阻燃剂中磷的来源,磷氯键极为活泼,易与羟基和氨基发生亲核取代反应[12-14]。
炔丙基封端的树脂(PTR)室温下可长期存放,加工性能良好,炔丙基受热先重排形成苯并吡喃环(色烯),再自由基聚合交联为热固性树脂[15],其吸水率低于大部分树脂的相应值,可克服环氧树脂的吸水性(~5%)导致的复合材料在湿热环境下力学性能下降的不足[16]。本文由苯膦酰二氯与对氨基苯基炔丙基醚合成了一种含炔丙基苯基醚的苯膦酰胺N,N’-二(4-炔丙氧基苯基)-苯基膦酰胺(DPPPA),将其与氰酸酯共混制备了改性氰酸酯树脂,对活性苯膦酰胺改性氰酸酯的热性能、阻燃性和力学性能等进行了研究。
-
四氢呋喃、乙醇、氢氧化钠、二氯甲烷和硫酸钠:分析纯,上海泰坦科技有限公司;盐酸(w=37%):上海泰坦科技有限公司;乙醚、三乙胺、乙腈和苯基膦酰二氯:分析纯,上海麦克林生化科技有限公司;双酚A型二氰酸酯(BADCy)和双酚E型二氰酸酯(BEDCy):纯度分别为99.7%和95.6%,扬州天启新材料股份有限公司,结构见图1;对乙酰胺基苯基炔丙基醚:由实验室参照文献[17]制备。
-
核磁共振(1H-NMR、31P-NMR):瑞士布鲁克公司Avance400型,工作频率400 MHz,内标为TMS,溶剂为氘代DMSO;傅里叶变换红外光谱(FT-IR):美国尼高力公司iS10型,固体样品采用KBr压片制样,液体样品在KBr压片上涂膜制样;高效液相色谱(HPLC):美国Aglient公司Aligent 1260 SL,泵流速为0.001~5.0 mL/min,紫外检测波长为190~640 nm,检测限为8×10−8 g萘/mL;差示扫描量热分析(DSC):美国TA公司 Q2000型,N2气氛,流速50 mL/min,升温速率10 ℃/min,扫描温度40~400 ℃;热失重分析(TGA):瑞士梅特勒-托利多有限公司TGA/DSC1型,氮气或空气气氛,流速50 mL/min,升温速率10 ℃/min;动态热力学分析(DMA):瑞士梅特勒-托利多有限公司DMA1,采用三点弯曲模式测试样品动态力学性能,频率为1 Hz,升温速率为5 ℃/min;极限氧指数(LOI):莫帝斯燃烧技术(中国)COI型氧指数测定仪,按GB/T 2408—2008进行测试。
浇铸体力学性能:珠海三思泰捷CMT 5504型电子万能试验机,分别按照GB/T 2570—2008和GB/T 1040-92进行浇铸体弯曲性能和拉伸性能测试;树脂浇铸体的冲击性能:意大利CEAS公司CEAST 9050型冲击强度测试仪,按GB/T 1843—2008进行测试;扫描电子显微镜(SEM):日本日立超高分辨场发射扫描电子显微镜SU8020观察;吸湿率:树脂固化物的吸湿率按照国标GB/T 1034—2008测试。
-
在1 L的四口烧瓶中,将对乙酰氨苯基炔丙基醚(0.2 mol)溶于400 mL乙醇中并加入HCl(400 mL)。将混合液在70 ℃下搅拌8 h后倒入2 L烧杯中,用3 mol/L NaOH 溶液中和至中性后,用二氯甲烷萃取,去离子水洗涤至水层澄清,有机层经无水硫酸钠干燥,旋蒸除去二氯甲烷,得到浅黄色结晶产物对氨基苯基炔丙基醚(appe),收率82%,DSC测得熔点50 ℃,HPLC测得纯度为98.7%。
将氨基炔丙基醚(0.5 mol)和三乙胺(0.55 mol)加入内有400 mL无水乙腈的1 L四口烧瓶中,搅拌使其完全溶解. 将0.25 mol BPOD溶解在100 mL乙腈中,在冰水浴条件下缓慢滴加到烧瓶中,控制反应体系的温度在0~10 ℃,滴加完成后升温至60 ℃保温8 h后,趁热过滤除去固体,使用二氯甲烷萃取乙腈溶液中的产物,去离子水洗涤数次,有机层经干燥、旋蒸得片状晶体产物,在真空烘箱中100 ℃烘干后,在乙醇中超声洗涤以除去残留原料,得到灰白色片状晶体DPPPA,简称含炔丙基苯基醚磷酰胺,产率75%,熔点140 ℃,纯度为99.1%(HPLC法),其合成路线如图2所示。
-
把DPPPA分别与双酚A型和双酚E型氰酸酯按物质的量之比1∶1溶于四氢呋喃中搅拌混匀,加入催化剂(Ni(acac)2/3P(Ph)3)(树脂质量的0.3%),旋蒸去除溶剂得共混改性氰酸酯树脂,分别记为BADCy/DPPPA和BEDCy/DPPPA。将熔融状态的共混树脂倒入预制的钢制模具中,抽真空除去残余的溶剂,按固化工艺固化后得到浇铸体,对固化前后树脂的热性能、固化物极限氧指数和树脂浇铸体的力学性能和吸湿率进行测试。
-
对乙酰胺基苯基炔丙醚是由对氨基苯酚经氨基保护后与氯丙炔在相转移催化剂作用下合成。经酸还原后的对氨基苯基炔丙醚(appe)的1H-NMR谱图见图3(a),在化学位移2.49处对应炔氢的特征峰,在4.60处对应炔丙基中亚甲基氢的特征峰,在3.34处的宽峰对应伯胺氢的特征峰。图3(b)为DPPPA的1H-NMR谱图,在2.49处对应炔氢的特征峰,4.66处对应亚甲基氢的特征峰,在5.12处呈馒头状的峰对应仲胺氢的特征峰,DPPPA中存在5种化学环境的苯环氢,分别对应图中结构式上c处(6.81)、d处(7.13)、h处(6.59)、g处(7.49)及f处(7.75)的特征峰,各峰面积比与理论值接近。图3(c)为DPPPA的31P-NMR谱图,在9.0处有单一特征峰,是DPPPA中的磷,无其他含磷杂质。图3(d)是DPPPA的红外谱图,2 123 cm−1处是碳碳叁键(C≡C)的特征峰,3286 cm−1处的峰对应炔氢(C≡C―H)的特征峰,3287 cm−1处对应仲胺氢(H―N)的特征峰. 2 863 cm−1和2 915 cm−1处的峰对应亚甲基的特征峰,3 126、3 055 cm−1处和1 590 cm−1处的峰对应苯环的特征峰,1032 cm−1和698 cm−1为P―N―C的特征峰。核磁共振谱图和红外谱图的分析证实反应所得产物与目标物DPPPA的结构一致。
-
图4是样品的DSC曲线,具体数据见表1。图4中单一放热高峰是DPPPA的DSC谱图,磷酰胺型芳基二炔丙基醚自带活性仲胺氢,其熔点为149 ℃,固化起始温度(Ti)为210 ℃,固化峰值温度(Tp)为243 ℃。而类似结构的4-苯基-2,6-双(4-炔丙氧基苯基)吡啶(P-PHPP)的 Tp为280 ℃[19]。氰酸酯BADCy和BEDCY热固化的Ti分别为247 ℃和222 ℃,与DPPPA共混后树脂的Ti和Tp明显下降,这与加入催化剂Ni(acac)2/3P(Ph)3有关,DPPPA中的仲胺氢和炔氢等对氰酸酯的三聚环化固化也有催化作用[20-23]。共混树脂有2个明显的放热峰,这是DPPPA和氰酸酯各自固化反应的放热,且放热峰值温度都低于各自纯树脂的固化峰值温度。由DSC结果,采用170 ℃,2 h;200 ℃,2 h;240 ℃,4 h固化工艺对两种改性氰酸酯进行固化。
Sample DSC TGA in air Tg/℃ dcrosslink Water absorption/% Ti/℃ Tp/℃ Tf/℃ △H/(J·g−1) Td5/℃ Yr600/% Yr800/% DPPPA 210 243 265 1041 367 62 29 / / / BADCy 247 290 345 871 378 29 0 229 4.84 × 10−2 0.55 BEDCy 222 281 320 740 379 38 0 239 6.18 × 10−2 0.62 BADCy/DPPPA 162 178,244 281 890 330 52 33 210 2.34 × 10−2 0.51 BEDCy/DPPPA 180 199,238 208 799 48 26 215 215 4.58 × 10−2 0.49 表 1 样品的DSC分析结果
Table 1. DSC results of samples
改性氰酸酯固化物在空气中的TGA曲线如图5所示,分析结果见表1。DPPPA是含磷-氮的二炔丙基苯基醚化合物,热固化中炔丙基苯基醚经Claisen重排和烯键加成反应形成固化物[24]。DPPPA固化物在空气中5%热失重温度(Td5)为367 ℃,600 ℃和800 ℃的残留率(Yr600和Yr800)分别为62%和29%,表现出较好的热氧稳定性。BADCy和BEDCy固化后在空气中600 ℃残留率分别为33%和32%[25, 26]。氰酸酯与DPPPA共混固化物的Td5降低了,但Yr600增加至48%以上,Yr800更是从0增加至26%以上,说明DPPPA可增加氰酸酯树脂的热氧稳定性。DPPPA和其改性的氰酸酯树脂固化物在空气的热分解呈现3个阶段:DPPPA第1阶段应是苯环中P―C的断裂;第2阶段(450~600 ℃)是较平缓的分解阶段,与苯环中P―O和N―C键的断裂有关,也是阻挡氧化降解的阶段;第3阶段是苯环的降解。氰酸酯固化物在空气中热降解也经历了三嗪环与苯环的断裂、三嗪环的开裂(449~601 ℃)和苯环降解3个阶段[27]。DPPPA共混改性氰酸酯树脂固化物的热氧降解也有3个阶段,第2阶段降解温度在500~700 ℃,各自保持了树脂的热氧降解特性。说明氰酸酯和DPPPA共混后固化是各自形成自身的网络结构,固化后形成了互穿网络结构。
磷酰胺型芳基二炔丙基醚改性氰酸酯和氰酸酯浇铸体动态热力学特性如图6所示。图中各树脂浇铸体损耗因子曲线的α松弛峰值对应的温度为树脂的玻璃化转变温度(Tg,见表1),可知BADCy 和 BEDCy浇铸体的Tg分别为229 ℃和239 ℃。BADCy/DPPPA和BEDCy/DPPPA的Tg分别为210 ℃和215 ℃,比纯氰酸酯降低了19 ℃和24 ℃。这说明有三嗪环紧密结构的氰酸酯固化物在DPPPA混入后交联密度较低,固化中各自形成交联网络会相互影响自身交联的密度,且DPPPA中磷原子上的侧基苯基会导致交联网络的空间增大,醚键和P―N键等柔性链段的存在导致共混树脂固化物Tg降低。DPPPA共混改性氰酸酯树脂固化物的Tg只有1个峰,也说明DPPPA与氰酸酯相容性好,固化后形成均一的互穿网络。
依据Flory橡胶弹性分子理论,热固性树脂的交联密度(dcrosslink)可由弹性平台储能模量(E’)按式(1)进行计算[28]。
$ {d_{{\rm{crosslink}}}} = E'/2(1 + \gamma ){\rm{R}}T $ 式中E’为Tg +40 ℃处的储能模量,R为气体常数,γ为泊松比,对不可压缩网络取γ为0.5。由表1可以看出,树脂交联密度越大,氰酸酯的Tg越高,与DPPPA共混后树脂的Tg也越高。
-
van Krevelen[29]总结了不含卤素聚合物的极限氧指数(LOI)与其高温下残留率(Yr)的关系,给出了线性方程LOI=17.5+0.4 Yr。改性氰酸酯树脂固化物在空气中TGA分析所得的残留率(Yr600,见表1)用于树脂的极限氧指数(LOI)估算,计算可知,DPPPA改性的BADCy与BEDCy树脂固化物的极限氧指数估算值(38.1%,36.7%)与实测值(39.7%,35.4%)相近,改性BADCy树脂的极限氧指数大于改性BEDCy树脂的相应值,两者都高于35%,超过一般聚合物材料阻燃所需的LOI值28%。9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与二苯甲烷型双马来酰亚胺(BDM)加成物改性BADCy树脂的LOI值达37%时,该树脂的UL-94为V-0级[9]。DPPPA改性BADCy的LOI为39.7%,说明其阻燃性也优。磷酰胺型芳基二炔丙基醚(DPPPA)是活性化合物,受热会自聚形成交联结构,见图2。固化的DPPPA在受热时释放出的自由基PO·可阻断气相中燃烧产生的自由基,残碳层起到凝聚相阻燃作用。氰酸酯和磷酰胺型芳基二炔丙基醚结构中含有的氮元素受热时释放出NH3等含氮的不可燃烧气体,稀释了可燃气体和氧气以阻止高温空气对材料内部的进一步侵蚀。DPPPA可作为一种活性磷-氮协效阻燃剂提高氰酸酯的阻燃性。
-
表4是DPPPA改性氰酸酯浇铸体的力学性能。氰酸酯与DPPPA共混树脂浇铸体弯曲强度和拉伸强度高于102 MPa和39 MPa,改性BEDCy浇铸体的冲击强度为13 kJ/m2以上,高于改性BADCy浇铸体的冲击强度。改性BEDCy浇铸体的拉伸强度和冲击强度低于纯BEDCy浇铸体的拉伸强度(55 MPa)和冲击强度(17.5 kJ/m2)[30]。改性氰酸酯力学性能降低与氰酸酯自身交联网络受DPPPA交联的影响有关,密实的三嗪环减少使得固化树脂体系的交联密度下降,而两交联结构中大量苯环使固化树脂仍呈脆性。两种改性氰酸酯的冲击断面形貌如图7所示。两种改性氰酸酯的光滑断面上有条纹状山脊突起,说明树脂是脆性断裂,DPPPA共混改性BEDCy树脂的山脊突起较改性BADCy树脂更多,也反映出前者抗冲击性能高于后者。
氰酸酯及DPPPA改性氰酸酯树脂固化物的的吸湿率如表4所示。改性氰酸酯树脂较纯氰酸酯吸水率有所下降,改性BEDCy树脂吸水率下降明显。虽然DPPPA中P=O和仲胺与水通过氢键会吸湿,但是自身也会形成氢键而耐水,且炔丙基苯基醚吸水率低,因而可降低改性氰酸酯的吸水性。改性氰酸酯吸水率的降低可提高树脂的湿热稳定性。
Mechanical property Flexural strength/MPa Flexural modulus/GPa Tensile strength/MPa Elastic modulus/GPa Impact strength/kJ·m2 Cured BADCy/DPPPA 123.7±10.80 3.8±0.35 45.4±5.44 3.9±0.80 11.5±0.53 Cured BEDCy/DPPPA 102.1±11.68 3.4±0.40 39.4±3.02 3.8±0.88 13.8±1.19 表 2 改性氰酸酯树脂浇铸体的力学性能
Table 2. Mechanical properties of cured blended CE resins
-
(1)成功合成了一种新型芳基二炔丙基醚磷酰胺DPPPA,将其与氰酸酯经溶液混合制备了改性氰酸酯。
(2)镍催化剂和炔氢与仲胺氢可催化氰酸酯的固化反应,降低其固化温度,改性氰酸酯的固化反应由炔丙基苯基醚的固化和氰酸酯的三聚环化固化组成,固化形成互穿网络结构。
(3)固化的DPPPA改性BADCy树脂在空气中600 ℃的残留率可达52%,800 ℃残留率为33%,玻璃化转变温度比纯BADCy的相应值降低约20 ℃,但极限氧指数可达39%,阻燃性好;改性BADCy的力学性能低于纯氰酸酯树脂,改性BADCy浇铸体的拉伸强度为45 MPa,弯曲强度为123 MPa,冲击强度为11 kJ/m2,而吸水率可降至0.51%。
含炔丙基苯基醚磷酰胺改性氰酸酯树脂的制备与性能
Preparation and Proformance of Propargyl Phenyl Ether-Containing Phosphoramide Modified Cyanate Esters
-
摘要: 由对氨基苯基炔丙基醚与苯膦酰二氯合成了N,N’-二(4-炔丙氧基苯基)-苯基膦酰胺(DPPPA),用核磁共振谱(NMR)和红外光谱(FT-IR)表征其分子结构。将DPPPA分别与双酚A型二氰酸酯(BADCy)和双酚E型二氰酸酯(BEDCy)在溶液中混合均匀后制备了两种改性氰酸酯(BADCy/DPPPA和BEDCy/DPPPA),对两种改性氰酸酯的热性能、极限氧指数(LOI)和力学性能等进行了研究。结果表明:DPPPA可明显降低两种氰酸酯的起始固化温度和峰值温度,BADCy/DPPPA和BEDCy/DPPPA的固化物在空气中800 ℃保留率分别由纯氰酸酯的0增加至33%和26%,极限氧指数达39.4%和35.4%,冲击强度分别为11 kJ/m2和14 kJ/m2,但玻璃化转变温度(Tg)分别降低了19 ℃和24 ℃。BADCy/DPPPA浇铸体的弯曲强度和拉伸强度为123 MPa和45 MPa,高于BEDCy/DPPPA的相应值。DPPPA改性氰酸酯树脂的吸湿率有所降低。
-
关键词:
- N,N’-二(4-炔丙氧基苯基)-苯基膦酰胺 /
- 氰酸酯 /
- 热性能 /
- 极限氧指数 /
- 力学性能
Abstract: N,N’-di(4-propargyloxyphenyl) phosphoramide (DPPPA) was successfully synthesized by nucleophilic substitution of 4-propargyloxy aniline and phenylphosphonyl dichloride. The structure of DPPPA was characterized by nuclear magnetic resonance (NMR) and Fourier transformation infrared (FT-IR) analyses. DPPPA was used to mix with bisphenol A of dicyanate ester (BADCy) and bisphenol E of dicyanate ester (BEDCy) in solution. The DPPPA modified cyanate esters (BADCy/DPPPA and BEDCy/DPPPA) were obtained after the solvent was evaporated under vacuum. The thermal properties, limited oxygen index (LOI) and mechanical properties of the modified cyanate esters were studied. The results show that the residual yield at 800 ℃ in air of the cured BADCy/DPPPA and cured BEDCy/DPPPA increase from 0 to 33% and 26% in comparison with the cured neat cyanate esters, and the LOI of the cured modified cyanate esters reach 39.4 and 35.4, but the glass transition temperatures of the cured modified cyanate esters decrease by 19 ℃ and 24 ℃, respectively. The flexural and tensile strength of the cured BADCy/DPPPA are 123 MPa and 45 MPa, which are higher than that of the cured BEDCy/DPPPA. The impact strength of the cured BADCy/DPPPA and BEDCy/DPPPA are 11 kJ/m2 and 14 kJ/m2, respectively. The water absorption of the cured neat cyanate esters decreases with blended with DPPPA. -
表 1 样品的DSC分析结果
Table 1. DSC results of samples
Sample DSC TGA in air Tg/℃ dcrosslink Water absorption/% Ti/℃ Tp/℃ Tf/℃ △H/(J·g−1) Td5/℃ Yr600/% Yr800/% DPPPA 210 243 265 1041 367 62 29 / / / BADCy 247 290 345 871 378 29 0 229 4.84 × 10−2 0.55 BEDCy 222 281 320 740 379 38 0 239 6.18 × 10−2 0.62 BADCy/DPPPA 162 178,244 281 890 330 52 33 210 2.34 × 10−2 0.51 BEDCy/DPPPA 180 199,238 208 799 48 26 215 215 4.58 × 10−2 0.49 表 2 改性氰酸酯树脂浇铸体的力学性能
Table 2. Mechanical properties of cured blended CE resins
Mechanical property Flexural strength/MPa Flexural modulus/GPa Tensile strength/MPa Elastic modulus/GPa Impact strength/kJ·m2 Cured BADCy/DPPPA 123.7±10.80 3.8±0.35 45.4±5.44 3.9±0.80 11.5±0.53 Cured BEDCy/DPPPA 102.1±11.68 3.4±0.40 39.4±3.02 3.8±0.88 13.8±1.19 -
[1] VENKATESH M, GOUTHAMAN S, KANEMOTO S O, et al. Development of epoxy-cyanate ester-clay nanocomposites offering enhanced thermally stability [J]. Journal of Applied Polymer Science,2019,136(28). doi: 10.1002/app.47754 [2] LI H, WANG D Z, QU C Y, et al. Preparation and performances of bisphthalonitrile resin and novolac cyanate ester resin blends [J]. Polymer Bulletin,2019,76(11):5649-5660. doi: 10.1007/s00289-018-2663-9 [3] NAKAMURA S, FUJII T, MATSUKAWA S, et al. Specific heat, thermal conductivity, and magnetic susceptibility of cyanate ester resin: An alternative to commonly used epoxy resins [J]. Cryogenics,2018,95:76-81. doi: 10.1016/j.cryogenics.2018.09.001 [4] LIN C H, HUANG S J, WANG P J, et al. Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine [J]. Macromolecules,2012,45(18):7461-7466. doi: 10.1021/ma3009433 [5] GUROV D A, RABENOK E V, NOVIKOV G F. Dielectric spectroscopy study of cyanate ester oligomer curing kinetics [J]. Russian Chemical Bulletin,2018,67(6):1045-1050. doi: 10.1007/s11172-018-2178-4 [6] LI H Y, LI C M, GAO J G, et al. Ameliorated mechanical and dielectric properties of heat-resistant radome cyanate composites [J]. Molecules,2020,25(14). doi: 10.3390/molecules25143117 [7] KLINKOWSKI C, ZANG L, DÖRING M. DOPO-based flame retardants: Synthesis and flame retardant efficiency in polymers [J]. Materials China,2013,32(3):144-158. [8] SALMEIA K A, GAAN S. An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications [J]. Polymer Degradation and Stability,2015,113:119-134. doi: 10.1016/j.polymdegradstab.2014.12.014 [9] CHEN X, WANG J, HUO S Q, et al. Preparation of flame-retardant cyanate ester resin combined with phosphorus-containing maleimide [J]. Journal of Thermal Analysis and Calorimetry,2018,132(3):1617-1628. doi: 10.1007/s10973-018-6979-3 [10] CHEN X, WANG J, HUO S Q, et al. Preparation of flame-retardant cyanate ester with low dielectric constants and dissipation factors modified with novel phosphorus-contained Schiff base [J]. Journal of Thermal Analysis & Calorimetry,2019,135(6):3153-3164. [11] CHEN X, WANG J, HUO S Q, et al. Study on properties of flame-retardant cyanate esters modified with DOPO and triazine compounds [J]. Polymers for Advanced Technologies,2018,29(10):2574-2582. doi: 10.1002/pat.4368 [12] TAN Z W, SUN J, WU C Y, et al. Phosphorus-containing polymers from THPS. IV: Synthesis and properties of phosphorus-containing polybenzoxazines as a green route for recycling toxic phosphine (PH3) tail gas [J]. Journal of Hazardous Materials,2017,322:540-550. doi: 10.1016/j.jhazmat.2016.10.021 [13] MESTRY S, MHASKE S T. Synthesis of epoxy resins using phosphorus-based precursors for flame-retardant coating [J]. Journal of Coatings Technology & Research,2019,16(3):807-818. [14] 王萃萃, 戴震, 黄毅萍, 等. 有机磷阻燃改性水性聚氨酯 [J]. 功能高分子学报,2010,23(3):285-290. [15] DIRLIKOV S K. Propargyl-terminated resins: A hydrophobic substitute for epoxy resins [J]. High Performance Polymers,1990,2(1):67-77. doi: 10.1177/152483999000200107 [16] DOUGLAS W E, OVEREND A S. Curing reactions in acetylene terminated resins-III. DSC, TGA and TMA study of catalyzed cure of an ethynylaryl-terminated monomer [J]. European Polymer Journal,1991,27(11):1279-1287. doi: 10.1016/0014-3057(91)90066-W [17] AGAG T, TAKEICHI T. Novel benzoxazine monomers containing p-phenyl propargyl ether: polymerization of monomers and properties of polybenzoxazines [J]. Macromolecules,2001,34(21):7257-7263. doi: 10.1021/ma0107915 [18] ISHII H, ISHIKAWA T, TAKEDA S, et al. Cesium fluoride-mediated Claisen rearrangement of aryl propargyl ether and its application to the synthesis of chelerythrine [J]. Chemical and Pharmaceutical Bulletin,1990,38(6):1775-1777. doi: 10.1248/cpb.38.1775 [19] YANG G, ZHOU C, LI B. Novel propargylether-terminated monomers containing pyridine and phenyl pendent group: Synthesis, cure, and properties [J]. Journal of Applied Polymer Science,2014,131(13). doi: 10.1002/APP.40469 [20] HAMERTON I, HAY J N. Recent developments in the chemistry of cyanate esters [J]. Polymer International,1998,47(4):465-473. doi: 10.1002/(SICI)1097-0126(199812)47:4<465::AID-PI88>3.0.CO;2-S [21] 杜峰可, 袁荞龙, 黄发荣. 含硅芳炔树脂/苯并噁嗪/氰酸酯三元聚合体系研究 [J]. 高分子学报,2018(3):410-418. doi: 10.11777/j.issn1000-3304.2017.17099 [22] CAI M, YUAN Q, HUANG F. Catalytic effect of poly(silicon-containing arylacetylene) with terminal acetylene on the curing reaction and properties of a bisphenol A type cyanate ester [J]. Polymer International,2018,67(11):1563-1571. doi: 10.1002/pi.5679 [23] 周晖, 王帆, 刘荣鹏, 等. 苯并噁嗪改性氰酸酯树脂的制备与性能 [J]. 功能高分子学报,2018,31(6):602-608. [24] GRENIER-LOUSTALOT M F, SANGLAR C. Propargylic terminated prepolymers. 2: Molten state mechanisms and kinetics of difunctional systems [J]. High Performance Polymers,1996,8(3):315-339. doi: 10.1088/0954-0083/8/3/001 [25] GUENTHNER A J, YANDEK G R, WRIGHT M E, et al. A new silicon-containing bis(cyanate) ester resin with improved thermal oxidation and moisture resistance [J]. Macromolecules,2006,39(18):6046-6053. doi: 10.1021/ma060991m [26] REAMS J T, GUENTHNER A J, LAMISON K R, et al. Formulation and physical properties of cyanate ester nanocomposites based on graphene [J]. Journal of Polymer Science Part B: Polymer Physics,2014,52(16):1061-1070. doi: 10.1002/polb.23532 [27] LIN Y, SONG M. Effect of polyhedral oligomeric silsesquioxane nanoparticles on thermal decomposition of cyanate ester resin [J]. Reactive and Functional Polymers,2018,129:58-63. doi: 10.1016/j.reactfunctpolym.2017.07.007 [28] OHASHI S, KILBANE J, HEYL T, et al. Synthesis and characterization of cyanate ester functional benzoxazine and its polymer [J]. Macromolecules,2015,48(23):8412-8417. doi: 10.1021/acs.macromol.5b02285 [29] van KREVELEN D W. Some basic aspects of flame resistance of polymeric materials [J]. Polymer,1975,16(8):615-620. doi: 10.1016/0032-3861(75)90157-3 [30] LI Z, HU J, MA L, et al. High glass transition temperature shape-memory materials: Hydroxyl terminated polydimethylsiloxane-modified cyanate ester [J]. Journal of Applied Polymer Science,2020. doi: 10.1002/APP.48641 -