高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含二硒聚碳酸酯自组装胶束的制备及其性能

马晓宁 周沉 郎美东

马晓宁, 周沉, 郎美东. 含二硒聚碳酸酯自组装胶束的制备及其性能[J]. 功能高分子学报, 2021, 34(3): 269-276. doi: 10.14133/j.cnki.1008-9357.20201126001
引用本文: 马晓宁, 周沉, 郎美东. 含二硒聚碳酸酯自组装胶束的制备及其性能[J]. 功能高分子学报, 2021, 34(3): 269-276. doi: 10.14133/j.cnki.1008-9357.20201126001
MA Xiaoning, ZHOU Chen, LANG Meidong. Synthesis and Properties of Self-Assembling Diselenide-Containing Polycarbonate Micelles[J]. Journal of Functional Polymers, 2021, 34(3): 269-276. doi: 10.14133/j.cnki.1008-9357.20201126001
Citation: MA Xiaoning, ZHOU Chen, LANG Meidong. Synthesis and Properties of Self-Assembling Diselenide-Containing Polycarbonate Micelles[J]. Journal of Functional Polymers, 2021, 34(3): 269-276. doi: 10.14133/j.cnki.1008-9357.20201126001

含二硒聚碳酸酯自组装胶束的制备及其性能

doi: 10.14133/j.cnki.1008-9357.20201126001
基金项目: 国家重点研发计划(2016YFC110703)
详细信息
    作者简介:

    马晓宁(1995—),女,硕士,主要研究方向为功能高分子材料和药物控释材料。E-mail:m849032806@163.com

    通讯作者:

    郎美东,E-mail:mdlang@ecust.edu.cn

  • 中图分类号: O633.4

Synthesis and Properties of Self-Assembling Diselenide-Containing Polycarbonate Micelles

  • 摘要: 使用开环聚合方法,通过调整聚合投料比设计合成了一系列含二硒的聚碳酸酯共聚物,该共聚物具有合适的相对分子质量、分子量分布窄及可调节的硒含量。以透析法、薄膜分散法和超声乳化法将共聚物自组装成胶束,通过粒径和粒径分布以及载药量的对比考察不同胶束制备方法的优劣势。研究表明:透析法和薄膜分散法更适合用于将该共聚物制备成胶束,胶束平均粒径在200 nm以内;体外模拟的药物释放实验表明,含二硒聚碳酸酯在谷胱甘肽刺激环境下能有效地响应性释放药物。

     

  • 图  1  mPEG-b-(PSeSe-co-PTMC)的合成路径

    Figure  1.  Synthesis routine of mPEG-b-(PSeSe-co-PTMC)

    图  2  mPEG-b-(PSeSe-co-PTMC)的核磁共振谱图

    Figure  2.  NMR spectra of mPEG-b-(PSeSe-co-PTMC)

    图  3  mPEG-b-(PSeSe-co-PTMC)胶束的CMC测算谱图

    Figure  3.  CMC spectra of mPEG-b-(PSeSe-co-PTMC) micelles

    图  4  不同方法制备的胶束的粒径

    Figure  4.  Particle size of micelles prepared from different methods

    图  5  P1胶束的TEM照片

    Figure  5.  TEM images of P1 micelles

    图  6  共聚物胶束的药物释放行为

    Figure  6.  Drug release behavior of copolymer micelles

    图  7  P1胶束经GSH处理12 h前(a)后(b)的TEM照片

    Figure  7.  TEM images of P1 micelles before (a) and after (b) dealing with GSH for 12 h

                             c(GSH)=30 mmol/L

    表  1  mPEG-b-(PSeSe-co-PTMC)的分子量表征

    Table  1.   Molecular weight characterization of mPEG-b-(PSeSe-co-PTMC)

    EntryDesigned1)Composition2)
    c(I)∶c(MSeSe)∶c(TMC)Mnw(Se)/%c(I)∶c(MSeSe)∶c(TMC)3)Mn13)w(Se)/%3)Mn24)Đ4)
    P1 1∶1∶55 8.1×103 3.9 1/59 8.6×103 3.7 8.8×103 1.2
    P2 1∶3∶44 8.1×103 11.6 3/41 7.8×103 12.1 7.7×103 1.3
    P3 1∶5∶33 8.1×103 19.5 5/34 8.2×103 19.2 7.1×103 1.2
    1) The designed molar ratio, molecular weight and mass fraction of selenium(w(Se));2) The obtained molar ratio, molecular weight and w(Se);3) Determined by 1H-NMR spectrum integral ratios;4) Dispersity (Đ) determined by GPC
    下载: 导出CSV

    表  2  DLS 测定不同方法制得胶束的粒径数据

    Table  2.   Particle size of micelles prepared from different methods by DLS

    EntryDialysis methodFilm dispersion methodUltrasonic emulsification method
    dP1)/nmdA2)/nmdP1)/nmdA2)/nmdP1)/nmdA2)/nm
    P1 117.1 106.7 193.2 172.2 177.3 149.6
    P2 76.8 69.4 80.0 72.6 157.3 125.5
    P3 70.2 59.5 59.0 53.4 172.2 132.5
    1)Particle size corresponding to peak point;2)Average particle size of micelles sample
    下载: 导出CSV

    表  3  共聚物胶束的载药量与包封率

    Table  3.   Drug loading and encapsulate efficiency of copolymer micelles

    EntryDialysis methodFilm dispersion methodUltrasonic emulsification method
    DL/%EE/%DL/%EE/%DL/%EE/%
    P10.31.31.03.80.83.2
    P20.62.20.72.80.72.6
    P30.93.60.93.70.72.7
    下载: 导出CSV
  • [1] LONNECKER A T, LIM Y H, WOOLEY K L. Functional polycarbonate of a D-glucal-derived bicyclic carbonate via organocatalytic ring-opening polymerization [J]. ACS Macro Letters,2017,6(7):748-753. doi: 10.1021/acsmacrolett.7b00362
    [2] TANG Y W, LABOE R S, REVENKO I, et al. Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes [J]. Journal of Biomaterials Science: Polymer Edition,2002,13 (4):463-483. doi: 10.1163/156856202320253965
    [3] LIU J, MA X, TONG Y, et al. Syntheses of diselenide-containing dynamic polymers and their application in polymer alloys [J]. Applied Surface Science,2019,467-468:477-485. doi: 10.1016/j.apsusc.2018.10.154
    [4] GUO Z, LIU X, CHEN Z, et al. New liquid crystal polycarbonate micelles for intracellular delivery of anticancer drugs [J]. Colloid and Surface B: Biointerfaces,2019,178:395-403. doi: 10.1016/j.colsurfb.2019.03.024
    [5] BORGESA G S M, SILVA J D, FERNANDESA R S. et al Sclareol is a potent enhancer of doxorubicin: Evaluation of the free combination and co-loaded nanostructured lipid carriers against breast cancer [J]. Life Science,2019,232:116678. doi: 10.1016/j.lfs.2019.116678
    [6] MA Y, LIANG X, TONG S, et al. Gold nanoshell nanomicelles for potential magnetic and resonance imaging, light-triggered drug release, and photothermal therapy [J]. Advanced Functional Materials,2013,23(7):815-822. doi: 10.1002/adfm.201201663
    [7] RAPOPORT N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery [J]. Progress in Polymer Science,2007,32(8-9):962-990. doi: 10.1016/j.progpolymsci.2007.05.009
    [8] QIU Y, PARK K. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews,2012,64(S):49-60.
    [9] XIAO D, JIA H Z, ZHANG J, et al. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery [J]. Small,2014,10(3):591-598. doi: 10.1002/smll.201301926
    [10] WANG M, SUN S, NEUFELD C I, et al. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy [J]. Angewandte Chemie International Edition,2014,53 (49):13444-13448. doi: 10.1002/anie.201407234
    [11] CAO W, WANG L, XU H. Selenium/tellurium containing polymer materials in nanobiotechnology [J]. Nano Today,2015,10 (6):717-736. doi: 10.1016/j.nantod.2015.11.004
    [12] LIU J, PANG Y, ZHU Z, et al. Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment [J]. Biomacromolecules,2013,14 (5):1627-1636. doi: 10.1021/bm4002574
    [13] HOLLINGER J, JAHNKE A A, COOMBS N, et al. Controlling phase separation and optical properties in conjugated polymers through selenophene-thiophene copolymerization [J]. Journal of the American Chemical Society,2010,132 (25):8546-8547. doi: 10.1021/ja103191u
    [14] XU H, CAO W, ZHANG X. Selenium-containing polymers: Promising biomaterials for controlled release and enzyme mimics [J]. Accounts of Chemical Research,2013,46 (7):1647-1658. doi: 10.1021/ar4000339
    [15] MA N, LI Y, REN H, et al. Selenium-containing block copolymers and their oxidation-responsive aggregates [J]. Polymer Chemistry,2010,1 (10):1609-1614. doi: 10.1039/c0py00144a
    [16] MA N, LI Y, XU H, et al. Dual redox responsive assemblies formed from diselenide block copolymers [J]. Journal of the American Chemical Society,2010,132 (2):442-443. doi: 10.1021/ja908124g
    [17] XIA J, LI T, LU C, et al. Selenium-containing polymers: Perspectives toward diverse applications in both adaptive and biomedical materials [J]. Macromolecules,2018,51:7435-7455. doi: 10.1021/acs.macromol.8b01597
    [18] PAN X, DRIESSEN F, ZHU X, et al. Selenolactone as a building block toward dynamic diselenide-containing polymer architectures with controllable topology [J]. ACS Macro Letters,2017,6 (2):89-92. doi: 10.1021/acsmacrolett.6b00944
    [19] 王 磊, 龚飞荣, 刘 峰, 等. 一种还原响应性紫杉醇胶束的制备于性能 [J]. 功能高分子学报,2019,32(1):71-79.

    WANG L, GONG F R, LIU F, et al. Preparation and properties of redox-responsive paclitaxel micelles [J]. Journal of Functional Polymers,2019,32(1):71-79.
    [20] 屈文豪, 杨全军, 黄 平, 等. PEG化羟甲基小白菊内酯抗肿瘤前药纳米颗粒的制备及性能 [J]. 功能高分子学报,2020,33(3):275-283.

    QU W H, YANG Q J, HUANG P, et al. Preparation and property of PEGylated melampomagnolide B prodrug nanoparticles for cancer therapy [J]. Journal of Functional Polymers,2020,33(3):275-283.
    [21] 戴一星, 郎美东. 羧甲基壳聚糖基胶束的制备及其缓释性 [J]. 功能高分子学报,2018,31(1):75-81.

    DAI Y X, LANG M D. Preparation and sustained release of carboxymethyl chitosan derived micelles [J]. Journal of Functional Polymers,2018,31(1):75-81.
    [22] QI M, ZHOU Y. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications [J]. Materials Chemistry Frontiers,2019,3:1994-2009. doi: 10.1039/C9QM00442D
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  234
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-26
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回