-
石墨烯的发现及其优异的物理化学性质激发了学者对新型二维材料的研究与开发。目前,很多合成方法已经被用于制备二维材料,例如自上而下的剥离法、自下而上的化学气相沉积法和溶液合成法等。在无机或有机二维材料的可控制备中,界面合成法扮演着重要的角色[1]。界面合成法可以将分子或者前驱体限域在二维界面从而实现对二维材料结构、形貌和结晶性等物理化学性质的调控。目前,二维聚合物主要通过对以范德华力堆积的共价有机框架材料或聚合物晶体的液相进行剥离制备。然而,这种剥离难以实现对二维材料尺寸和厚度的精准控制。最近,通过气-水界面、液-水界面合成具有结晶性的单层或少层二维聚合物已经报道了很多[2, 3]。但是,所得到的二维聚合物结晶性和尺寸仍然不容乐观。这极大限制了有机二维材料潜在的应用。
二维聚合物晶体的可控制备是二维材料制备技术中极具挑战性的研究方向。近期,德累斯顿工业大学冯新亮课题组报道了一种表面活性剂单分子层辅助的界面聚合方法(SMAIS),并成功制备出高结晶度和大尺寸的超薄二维聚合物[4](如图1(a))。同时,这种方法也能实现对材料厚度的调控。气-液界面处的表面活性剂单分子层通过分子间氢键作用与静电作用诱导具有刚性对称的单体进行初排列,进而促进单体有序聚合。作者首次在表面活性剂油醇硫酸酯钠盐(SOS)辅助下,通过四氨基卟啉(单体1)和3,4,9,10-苝四甲酸二酐(单体2)的缩合反应制备了具有方形晶格的超薄二维聚酰亚胺(2DPI)(如图2(a))。由此方法得到的2DPI的厚度约为2 nm(大约5层),平均晶体大小为3.5 µm2。同时,作者用同样的方法将单体1与1,2,4,5-苯四甲酸酐(单体3)进行反应制备了高结晶性的具有双孔晶格的少层二维聚酰胺(2DPA)(如图2(a))。通过采用十八酸(SA)为单分子层,制备的2DPA的面积明显增加(如图2(c))。掠入射广角X射线散射(GIWAXS)和球差校正透射电镜(AC-HRTEM)详细阐明了2DPI和2DPA的分子结构、晶粒边界和晶边结构。理论计算和模型实验表明,自组装分子层能够促进单体诱导组装,加速单体在水表面的聚合反应,从而使得传统需要高温合成的聚酰亚胺可在室温条件下合成。
图 1 (a)表面活性剂单分子层辅助的界面聚合法制备2DPI和2DPA的合成步骤;(b)表面活性剂单分子层辅助的界面聚合法制备准二维聚苯胺(q2D PANI)薄膜的合成步骤图;(c)质子化的苯胺或寡聚物阳离子与表面活性剂磺酸基团的氢键作用(蓝色椭圆)与静电作用(绿色椭圆)[4, 5]
Figure 1. (a)Schematic of the synthetic procedure for 2DPI and 2DPA by SMAIS;(b)Schematic of the synthetic procedure for q2D PANI by SMAIS;(c)Schematic demonstration of the hydrogen(blue ellipse)and electrostatic interaction(green ellipse)between protonated aniline/oligomer cations and sulfonate group[4, 5]
图 2 (a)通过缩合反应制备2DPI和2DPA反应示意图;(b)2DPI的AC-HRTEM图;(c)2DPA的AC-HRTEM图;(d)准二维聚苯胺(q2D PANI)薄膜的AC-HRTEM图;(e)苯胺氧化聚合机理图[4, 5]
Figure 2. (a)A reaction scheme illustrating the synthesis of 2DPI and 2DPA via condensation reactions;(b)AC-HRTEM image of 2DPI;(c)AC-HRTEM image of 2DPI;(d)AC-HRTEM image of q2D PANI;(e)The mechanism of oxidative polymerization of aniline[4, 5]
该课题组采用此方法成功合成出截面尺寸约为50 cm2,厚度可调的(2.6~30 nm)高结晶性准二维聚苯胺薄膜[5]。高分辨透射电子显微镜(AC-HRTEM)表明每个晶粒内,所用聚苯胺分子链均沿着薄膜横向排列成完美的条纹(如图2(d))。这也是首次对聚苯胺分子链的分子级进行成像,对导电苯胺链间传输机理研究具有重要意义。由于优异的晶体结构及二维形貌,所获得的二维聚苯胺表现出各向异性的电荷传输特性,被盐酸掺杂后其横向导电率高达160 S/cm。通过该二维聚苯胺薄膜制备的化学传感器能够有效监测30 μg/L的氨气和10 μg/mL的挥发性有机化合物。在表面活性剂单分子层的作用下,苯胺在气液界面处可控有序地发生氧化聚合(如图1(b),图2(e))。该方法将传统的气-液界面的限域作用与自组装单分子层的诱导组装能力相结合,克服了传统苯胺聚合反应中容易自聚集的问题。如图1(c)中所示,表面活性剂磺酸离子的负电荷能够与聚苯胺产生强的静电作用和氢键作用,这种作用有利于形成均一形貌。该二维聚苯胺薄膜可以作为极具潜力的电活性材料,在薄膜有机电子器件领域具有潜在的应用价值。
冯新亮课题组报道的表面活性剂单分子层辅助的界面聚合方法克服了制备的二维聚合物结晶性差、尺寸小、厚度不可控等问题。该方法的成功极大地简化了二维聚合物晶体的制备,推动了二维聚合物晶体的研究与应用。
表面活性剂辅助界面聚合法合成结晶性二维聚合物
Surfactant-Assisted Interfacial Synthesis of Crystalline, Two-Dimensional Polymers
-
摘要: 二维材料由于其具有独特的物理和化学性质成为国际上的研究热点之一。制备面积大、厚度可控、长程有序的二维聚合物成为新型二维材料研究的难点之一。近几年,许多新型二维材料已被报道。然而,这些二维材料存在结晶性不足、尺寸小等缺点。近期,德累斯顿工业大学冯新亮课题组报道了利用表面活性剂单分子层辅助的界面聚合法(SMAIS)实现了可控制备二维聚合物晶体。该方法成功的关键在于气-液界面处的表面活性剂单分子层能够将分子或者前驱体限域在二维界面,并诱导单体排列和促进聚合,进而实现对二维材料结构、形貌和结晶性的调控。该课题组利用此方法成功制备出厚度可调的、高结晶性的准二维聚苯胺(q2D PANI)、二维聚酰亚胺(2DPI)和二维聚酰胺(2DPA),为制备二维聚合物晶体提供了新的思路。Abstract: Organic two-dimensional (2D) materials have become one of the emerging topics, due to their potential unique physical and chemical properties. The preparation of 2D polymers with large area, controllable thickness and long-range ordering features remains challenge. Many new organic 2D materials have been reported in the past few years. However, many organic 2D materials possess obvious disadvantages, including poor crystallinity, limited ordering size. Recently, Xinliang Feng's group at Dresden University of Technology reported the controllable preparation to crystalline two-dimensional polymer by surfactant-monolayer-assisted interfacial synthesis (SMAIS). The key of this method is the surfactant monolayers at the gas-liquid interface can limit molecules or precursors to the 2D interface, for further polymerization. The regulation of the repeating structure and crystallinity of as-prepared 2D polyaniline (2DPANI), 2D polyimide (2DPI) and 2D polyamide (2DPA) were very well studied. This method provides a new strategy for preparation of crystalline organic 2D polymers.
-
图 1 (a)表面活性剂单分子层辅助的界面聚合法制备2DPI和2DPA的合成步骤;(b)表面活性剂单分子层辅助的界面聚合法制备准二维聚苯胺(q2D PANI)薄膜的合成步骤图;(c)质子化的苯胺或寡聚物阳离子与表面活性剂磺酸基团的氢键作用(蓝色椭圆)与静电作用(绿色椭圆)[4, 5]
Figure 1. (a)Schematic of the synthetic procedure for 2DPI and 2DPA by SMAIS;(b)Schematic of the synthetic procedure for q2D PANI by SMAIS;(c)Schematic demonstration of the hydrogen(blue ellipse)and electrostatic interaction(green ellipse)between protonated aniline/oligomer cations and sulfonate group[4, 5]
图 2 (a)通过缩合反应制备2DPI和2DPA反应示意图;(b)2DPI的AC-HRTEM图;(c)2DPA的AC-HRTEM图;(d)准二维聚苯胺(q2D PANI)薄膜的AC-HRTEM图;(e)苯胺氧化聚合机理图[4, 5]
Figure 2. (a)A reaction scheme illustrating the synthesis of 2DPI and 2DPA via condensation reactions;(b)AC-HRTEM image of 2DPI;(c)AC-HRTEM image of 2DPI;(d)AC-HRTEM image of q2D PANI;(e)The mechanism of oxidative polymerization of aniline[4, 5]
-
[1] DONG R, ZHANG T, FENG X, et al. Interface-assisted synthesis of 2D materials: Trend and challenges [J]. Chem Rev,2018,118(13):6189-6235. doi: 10.1021/acs.chemrev.8b00056 [2] MURRAY D J, PATTERON D D, KING B T, et al. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface [J]. J Am Chem Soc,2015,137(10):3450-3453. doi: 10.1021/ja512018j [3] MATSUMOTO M, VALENTINO L, DICHTEL W R, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films [J]. Chem,2018,4(2):308-317. doi: 10.1016/j.chempr.2017.12.011 [4] LIU K, QI H, FENG X, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers [J]. Nat Chem,2019,11(11):994-1000. [5] ZHANG T, QI H, FENG X, et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances [J]. Nat Commun,2019,10(1):4225. doi: 10.1038/s41467-019-11921-3 -