高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面配位金属-有机框架薄膜的制备及电催化应用

靳志斌 张健 谷志刚

引用本文:
Citation:

表面配位金属-有机框架薄膜的制备及电催化应用

    作者简介: 靳志斌(1998—),男,硕士生,主要研究方向为表面配位聚合物薄膜;谷志刚,中国科学院福建物质结构研究所研究员,博士生导师。研究方向为金属有机聚合物薄膜在对映体识别分离、客体分子负载以及光学应用。已主持 国家自然基金(面上和青年项目)、中科院青年创新促进会、福建省基金、结构化学国家重点实验室课题。迄今为止在国际权威杂志Chem Soc Rev, Coord Chem Rev, Angew Chem, J Am Chem Soc, Nano Lett ACS Nano, Nat Commun, Appl Catal B: Environ Small, J Mater Chem A, ACS Appl Mater Interfaces等发表论文50篇。并入选中科院海西研究院“百人计划”、福建省引进高层次人才(境外B类)、中科院青年创新促进会会员。目前担任中科院青促会化学与材料分会理事.
    通讯作者: 谷志刚, zggu@fjirsm.ac.cn
  • 中图分类号: O641.4

Preparation and Electrocatalytic Applications of Surface-Coordinated Metal-Organic Framework Thin Films

    Corresponding author: GU Zhigang, zggu@fjirsm.ac.cn
  • CLC number: O641.4

  • 摘要: 设计和开发高效电催化剂对能源的存储和转化具有十分重要的意义。金属-有机框架(MOF)在基底表面通过液相外延层层配位组装的MOF薄膜(也被称作表面配位MOF薄膜,SURMOF)具有厚度可调节、生长取向可控以及表面均匀致密等优点,在电催化反应领域得到了广泛的研究和应用。本文总结了SURMOF及其衍生薄膜(SURMOF-D)的制备及其在电催化应用中的研究进展。由于SURMOF及其衍生薄膜具有结构多样性和功能可调节性,可在析氧反应、析氢反应、氧化还原反应、二氧化碳还原反应、超级电容器和串联电催化等过程中提供丰富的活性位点并加速电荷转移,使电催化性能更加高效。本文还讨论了SURMOF作为一类新型的薄膜催化剂在电催化应用中的研究挑战和存在的问题。
  • 图 1  SURMOF及其衍生薄膜的制备和电催化应用的示意图

    Figure 1.  Diagrammatic sketch for the preparation and the electrocatalytic applications of SURMOF and their derivative thin film

    图 2  SURMOF和SURMOF-D在电催化应用中的研究进展

    Figure 2.  Historical progress of SURMOF and SURMOF-D in electrocatalytic application

    图 3  SURMOF制备过程以及制备装置[91-95]

    Figure 3.  Schematic diagram of SURMOF preparation process and preparation device[91-95]

    图 4  (a)三维M2(BDC)2TED纳米片阵列薄膜在CF基底上的生长制备;(b)样品在CF基底上的LSV曲线;(c)具有不同液相外延周期的Co/Ni(BDC)2TED@CF的LSV曲线;(d)MOF@AuNMEs和AuNME控制的法拉第效率[82, 83]

    Figure 4.  (a)Preparation of the 3-D thin film of M2(BDC)2TED nanosheet arrays grown on CF; (b)LSV curves of samples on CF; (c)LSV curves for Co/Ni(BDC)2TED@CF with different LPE cycles; (d)Faraday efficiencies of MOF@AuNMEs and AuNME control[82, 83]

    图 5  (a)采用层层喷涂法在功能化FTO基底上制备Re-SURMOF的过程;Re-SURMOF的(b)循环伏安曲线和(c)法拉第效率[102]

    Figure 5.  (a)Fabrication process of Re-SURMOF on functionalized FTO substrate in a LBL spray fashion; (b) CV and (c) Faraday efficiency of Re-SURMOF[102]

    图 6  SURMOF-D样品制备的示意图:(a)通过碳化SURMOF将金属纳米催化剂与碳薄膜结合[126];(b)Cu-MOF HKUST-1外延纺织涂层衍生分级碳布的制备工艺[86];(c)由核-壳结构的SiO2@SURMOF纳米球碳化出的Cu-TiO2(Cu-TiO2/C)空心碳纳米球[127]

    Figure 6.  Schematic illustration of the preparation examples of SURMOF-D:(a)Metal-nanocatalyst incorporated carbon thin films by carbonizing SURMOF[126]; (b)The prepared process of hierarchical carbon cloth derived from Cu-MOF HKUST-1 epitaxial coating on textiles[86]; (c)Hollow carbon nanospheres with Cu-TiO2(Cu-TiO2/C) carbonized from core-shell structural SiO2@SURMOF nanospheres[127]

    图 7  (a)用于OER功能的CeO2@PIZA-1薄膜(衍生于羟基功能化FTO玻璃基底上,采用改良的LPE法制备的Ce(pdc)3负载PIZA-1薄膜)制备示意图;(b)N2氛围下PIZA-1粉末在不同温度下煅烧后得到的LSV极化曲线;(c)具有不同循环次数的PIZA-1-400/FTO极化曲线;(d)FTO,PIZA-1-400和CeO2@PIZA-1-400的极化曲线[129]

    Figure 7.  (a)Schematic illustration of the preparation of CeO2@PIZA-1 thin film derived from modified LPE fabrication process of the Ce(pdc)3 encapsulated PIZA-1 thin film on the OH-functionalized FTO glass substrate for OER performance; (b)LSV polarization curves of PIZA-1 powder after calcination at different temperatures under N2 atmosphere; (c)Polarization curves of PIZA-1-400/FTO with different cycles; (d)Polarization curves of bare FTO, PIZA-1-400 and CeO2@PIZA-1-400[129]

    图 8  (a)CoFe-PBA薄膜与(b)CoFe2O4薄膜的SEM图片;(c)(1)CoFe2O4薄膜、(2)RuO2、(3)CoFe2O4粉末、(4)CoFe-PBA薄膜、(5)扫描速率为2 mV/s泡沫镍-350的LSV曲线;(d)NiFe-BDC(X)SURMOF(X=NH2, H, OCH3)的制备及其向SURMOF-D(1-X)的转化;(e)SURMOF-D(1-X)的阳极极化曲线(支撑在铂微电极上,直径为25 µm,以5 mV/s的扫描速率记录在氧饱和的0.1 mol/L KOH溶液中,温度为25 ℃,所有的极化曲线都显示在没有红外降补偿的情况下);(f)1-NH2在各种转速下的极化曲线(支撑在Au盘电极上)[84, 131]

    Figure 8.  SEM images of (a)CoFe-PBA and (b)CoFe2O4 thin film; (c)LSV curves of (1)CoFe2O4 thin film, (2)RuO2, (3)CoFe2O4 powder, (4)CoFe-PBA thin film, and (5)Ni foam-350 with a scan rate of 2 mV/s; (d)Preparation of NiFe-BDC(X)SURMOF(X=NH2, H, OCH3) and transformation of NiFe-BDC(X)SURMOF to SURMOF-D(1-X); (e)Anodic polarization curves of SURMOF-D(1-X)(Supported on a Pt microelectrode, diameter is 25 µm, recorded in O2-saturated 0.1 mol/L KOH at a scan rate of 5 mV/s, Temperature is 25 ℃, All polarization curves are shown without IR drop compensation); (f)Polarization curves of 1-NH2(supported on an Au disc electrode) at various rotational speeds[84, 131]

    图 9  (a)MSZIF-T电催化剂的合成过程;(b)各种电催化剂在1600 r/min转速下的ORR极化曲线;MSZIF-900催化剂的(c)HER和(d)OER电化学性能[85]

    Figure 9.  (a)Illustration of the synthesis process for the MSZIF-T electrocatalysts; (b)ORR polarization curves for the various electrocatalysts at a rotation speed of 1600 r/min; (c)HER and (d)OER of electrochemical performance of the MSZIF-900 catalyst[85]

  • [1] ZHU W, CHEN Z, PAN Y, et al. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction [J]. Advanced Materials,2019,31(38):1800426.
    [2] ZHANG L H, SHI Y, WANG Y, et al. Nanocarbon catalysts: Recent understanding regarding the active sites [J]. Advanced Science,2020,7(5):1902126.
    [3] ZHANG L, WANG Y, NIU Z, et al. Single atoms on graphene for energy storage and conversion [J]. Small Methods,2019,3(9):1800443.
    [4] XU X, SAN H K, DUC A D, et al. Recent advances in hybrid sodium-air batteries [J]. Materials Horizons,2019,6(7):1306-1335. doi: 10.1039/C8MH01375F
    [5] TANG H, ZHENG M, HU Q, et al. Derivatives of coordination compounds for rechargeable batteries [J]. Journal of Materials Chemistry A,2018,6(29):13999-14024. doi: 10.1039/C8TA03644F
    [6] ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science,2011,332(6037):1537-1541. doi: 10.1126/science.1200770
    [7] PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [8] NAVEEN M H, GURUDATT N G, SHIM Y B. Applications of conducting polymer composites to electrochemical sensors: A review [J]. Applied Materials Today,2017,9:419-433. doi: 10.1016/j.apmt.2017.09.001
    [9] BANDODKAR A J, LÓPEZ C S, VINU M A M, et al. All-printed magnetically self-healing electrochemical devices [J]. Science Advances,2016,2(11):e1601465. doi: 10.1126/sciadv.1601465
    [10] JIANG Z Q, LI Y F, ZHU X J, et al. Ni(II)-based coordination polymers for efficient electrocatalytic oxygen evolution reaction [J]. Rsc Advances,2018,8(67):38562-38565. doi: 10.1039/C8RA07492E
    [11] KUMAR A, BHATTACHARYYA S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting [J]. Acs Applied Materials & Interfaces,2017,9(48):41906-41915.
    [12] SHARIFI T, GRACIA-ESPINO E, CHEN A, et al. Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis [J]. Advanced Energy Materials,2020,10:1902084.
    [13] BAI X F, CHEN W, WANG B Y, et al. Recent progress on electrochemical reduction of carbon dioxide [J]. Acta Physico-Chimica Sinica,2017,33(12):2388-2403.
    [14] HOU J, YANG M, ZHANG J. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions [J]. Nanoscale,2020,12(13):6900-6920.
    [15] TANG J, CHEN D, YAO Q, et al. Recent advances in noble metal-based nanocomposites for electrochemical reactions [J]. Materials Today Energy,2017,6:115-127. doi: 10.1016/j.mtener.2017.09.005
    [16] LIU J, MA Q, HUANG Z, et al. Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications [J]. Advanced Materials,2019,31(9):1800696. doi: 10.1002/adma.201800696
    [17] SHI Q, ZHU C, DU D, et al. Robust noble metal-based electrocatalysts for oxygen evolution reaction [J]. Chemical Society Reviews,2019,48(12):3181-3192. doi: 10.1039/C8CS00671G
    [18] RAHMAN G, CHAE S Y, OH-SHIM J. Efficient hydrogen evolution performance of phase-pure NiS electrocatalysts grown on fluorine-doped tin oxide-coated glass by facile chemical bath deposition [J]. International Journal of Hydrogen Energy,2018,43(29):13022-13031. doi: 10.1016/j.ijhydene.2018.05.049
    [19] XIE J, XIE Y. Transition metal nitrides for electrocatalytic energy conversion: Opportunities and challenges [J]. Chemistry: A European Journal,2016,22(11):3588-3598. doi: 10.1002/chem.201501120
    [20] ZHANG X, SHAO J, HUANG W, et al. Three dimensional carbon substrate materials for electrolysis of water [J]. Science China-Materials,2018,61(9):1143-1153. doi: 10.1007/s40843-018-9295-8
    [21] LIU D, TAO L, YAN D, et al. Recent advances on non-precious metal porous carbon-based electrocatalysts for oxygen reduction reaction [J]. Chemelectrochem,2018,5(14):1775-1785. doi: 10.1002/celc.201800086
    [22] WU J X, HE C T, LI G R, et al. An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu―C hybrid nanorod arrays for an efficient oxygen evolution reaction [J]. Journal of Materials Chemistry A,2018,6(39):19176-19181. doi: 10.1039/C8TA06069J
    [23] MENG N, LIU C, LIU Y, et al. Efficient electrosynthesis of syngas with tunable CO/H2 ratios over Zn xCd1− xS-amine inorganic-organic hybrids [J]. Angewandte Chemie International Edition,2019,58(52):18908-18912. doi: 10.1002/anie.201913003
    [24] SU J, GE R, DONG Y, et al. Recent progress in single-atom electrocatalysts: Concept, synthesis, and applications in clean energy conversion [J]. Journal of Materials Chemistry A,2018,6(29):14025-14042. doi: 10.1039/C8TA04064H
    [25] QIAN Y, KHAN I A, ZHAO D. Electrocatalysts derived from metal-organic frameworks for oxygen reduction and evolution reactions in aqueous media [J]. Small,2017,13(37):1701143.
    [26] YANG Y, MA Y, LI P, et al. Research progress in non-precious metal electrocatalyst for oxygen reduction reaction [J]. Battery Bimonthly,2018,48(1):56-59.
    [27] KITAGAWA S, KITAURA R, NORO S I. Functional porous coordination polymers [J]. Angewandte Chemie International Edition,2004,43(18):2334-2375. doi: 10.1002/anie.200300610
    [28] HORIKE S, UMEYAMA D, KITAGAWA S. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks [J]. Accounts of Chemical Research,2013,46(11):2376-2384. doi: 10.1021/ar300291s
    [29] KANG X M, SHI Y, CAO C S, et al. Stable metal-organic frameworks with high catalytic performance in the cycloaddition of CO2 with aziridines [J]. Science China Chemistry,2019,62(5):622-628. doi: 10.1007/s11426-018-9420-6
    [30] HE Y C, YANG J, KAN W Q, et al. A new microporous anionic metal-organic framework as a platform for highly selective adsorption and separation of organic dyes [J]. Journal of Materials Chemistry A,2015,3(4):1675-1681. doi: 10.1039/C4TA05391E
    [31] WANG W, XU X, ZHOU W, et al. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting [J]. Advanced Science,2017,4(4):1600371.
    [32] MINGABUDINOVA L R, VINOGRADOV V V, MILICHKO V A, et al. , Metal-organic frameworks as competitive materials for non-linear optics [J]. Chemical Society Reviews,2016,45(19):5408-5431. doi: 10.1039/C6CS00395H
    [33] WANG C, ZHANG T, LIN W. Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics [J]. Chemical Reviews,2012,112(2):1084-1104. doi: 10.1021/cr200252n
    [34] KURMOO M. Magnetic metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1353-1379. doi: 10.1039/b804757j
    [35] TAYLOR K M L, RIETER W J, LIN W. Manganese-based nanoscale metal-organic frameworks for magnetic resonance imaging [J]. Journal of the American Chemical Society,2008,130(44):14358-14359. doi: 10.1021/ja803777x
    [36] STASSEN I, BURTCH N, TALIN A, et al. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors [J]. Chemical Society Reviews,2017,46(11):3185-3241. doi: 10.1039/C7CS00122C
    [37] KEMPAHANUMAKKAGARI S, VELLINGIRI K, DEEP A, et al. Metal-organic framework composites as electrocatalysts for electrochemical sensing applications [J]. Coordination Chemistry Reviews,2018,357:105-129. doi: 10.1016/j.ccr.2017.11.028
    [38] OKADA K, SAWAI S, IKIGAKI K, et al. Electrochemical sensing and catalysis using Cu-3(BTC)(2) coating electrodes from Cu(OH)(2) films [J]. Crystengcomm,2017,19(29):4194-4200. doi: 10.1039/C7CE00416H
    [39] DELLA R J, LIU D, LIN W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery [J]. Accounts of Chemical Research,2011,44(10):957-968. doi: 10.1021/ar200028a
    [40] WANG X, HUANG X, GAO W, et al. Metal-organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: A high-efficiency bifunctional electrocatalyst for overall water splitting [J]. Journal of Materials Chemistry A,2018,6(8):3684-3691. doi: 10.1039/C7TA10728E
    [41] PENG W, ZHENG G, WANG Y, et al. Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting [J]. International Journal of Hydrogen Energy,2019,44(36):19782-19791. doi: 10.1016/j.ijhydene.2019.05.101
    [42] LI Y, FU Y, LIU W, et al. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries [J]. Journal of Alloys and Compounds,2019,784:439-446. doi: 10.1016/j.jallcom.2019.01.085
    [43] SHI W, XU X, ZHANG L, et al. Metal-organic framework-derived structures for next-generation rechargeable batteries [J]. Functional Materials Letters,2018,11(6):1830006.
    [44] CHOI K M, JEONG H M, PARK J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks [J]. ACS Nano,2014,8(7):7451-7457. doi: 10.1021/nn5027092
    [45] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance [J]. Nat Mater,2017,16(2):220-224. doi: 10.1038/nmat4766
    [46] SHAO P, YI L, CHEN S, et al. Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers [J]. Journal of Energy Chemistry,2020,40:156-170. doi: 10.1016/j.jechem.2019.04.013
    [47] ROSEN B A, HOD I. Tunable molecular-scale materials for catalyzing the low-overpotential electrochemical conversion of CO2 [J]. Advanced Materials,2018,30(41):1706238.
    [48] ZHAO P, NIE H, YU J, et al. A facile synthesis of porous N-doped carbon with hybridization of Fe3C nanoparticle-encased CNTs for an advanced oxygen reduction reaction electrocatalyst [J]. Inorganic Chemistry Frontiers,2018,5(10):2546-2553. doi: 10.1039/C8QI00681D
    [49] YU X Y, FENG Y, GUAN B, et al. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction [J]. Energy & Environmental Science,2016,9(4):1246-1250.
    [50] LIU X, YUE T, QI K, et al. Metal-organic framework membranes: From synthesis to electrocatalytic applications [J]. Chinese Chemical Letters,2019,31(9):2189-2201.
    [51] OTAKE K I, CUI Y, BURU C T, et al. Single-atom-based vanadium oxide catalysts supported on metal-organic frameworks: Selective alcohol oxidation and structure-activity relationship [J]. Journal of the American Chemical Society,2018,140(28):8652-8656. doi: 10.1021/jacs.8b05107
    [52] CHEN Z, QING H, ZHOU K, et al. Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction [J]. Progress in Materials Science,2020,108:100618.
    [53] ZHAO P, HUA X, XU W, et al. Metal-organic framework-derived hybrid of Fe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation [J]. Catalysis Science & Technology,2016,6(16):6365-6371.
    [54] WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges [J]. Science Advances,2017,3(12):eaap9252. doi: 10.1126/sciadv.aap9252
    [55] LIU X, DONG J, YOU B, et al. Competent overall water-splitting electrocatalysts derived from ZIF-67 grown on carbon cloth [J]. Rsc Advances,2016,6(77):73336-73342. doi: 10.1039/C6RA17030G
    [56] WANG Q C, WANG J, LEI Y P, et al. Research progress on carbon nanotubes in noble-metal-free electrocatalytic oxygen reduction reaction [J]. Chinese Journal of Inorganic Chemistry,2018,34(5):807-822.
    [57] HUANG G, YIN D M, WANG L M. A general strategy for coating metal-organic frameworks on diverse components and architectures [J]. Journal of Materials Chemistry A,2016,4(39):15106-15116. doi: 10.1039/C6TA05389K
    [58] LI J H, WANG Y S, CHEN Y C, et al. Metal-organic frameworks toward electrocatalytic applications [J]. Applied Sciences,2019,9(12):2427.
    [59] WANG L, WU Y, CAO R, et al. Fe/Ni Metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential [J]. ACS Applied Materials & Interfaces,2016,8(26):16736-16743.
    [60] ZACHER D, SHEKHAH O, WÖLL C, et al. Thin films of metal-organic frameworks [J]. Chemical Society Reviews,2009,38(5):1418-1429. doi: 10.1039/b805038b
    [61] DUAN J, CHEN S, ZHAO C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting [J]. Nature Communications,2017,8(1):15341. doi: 10.1038/ncomms15341
    [62] LIN S, PINEDA-GALVAN Y, MAZA W A, et al. Electrochemical water oxidation by a catalyst-modified metal-organic framework thin film [J]. Chemsuschem,2017,10(3):514-522. doi: 10.1002/cssc.201601181
    [63] HOD I, BURY W, GARDNER D M, et al. Bias-switchable permselectivity and redox catalytic activity of a ferrocene-functionalized, thin-film metal-organic framework compound [J]. Journal of Physical Chemistry Letters,2015,6(4):586-591. doi: 10.1021/acs.jpclett.5b00019
    [64] RONG J, QIU F, ZHANG T, et al. Self-directed hierarchical Cu3(PO4)2/Cu-BDC nanosheets array based on copper foam as an efficient and durable electrocatalyst for overall water splitting [J]. Electrochimica Acta,2019,313:179-188. doi: 10.1016/j.electacta.2019.05.030
    [65] AHRENHOLTZ S R, EPLEY C C, MORRIS A J. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism [J]. J Am Chem Soc,2014,136(6):2464-2472. doi: 10.1021/ja410684q
    [66] BAI X J, LI Y N, YANG X M, et al. Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction [J]. Chem Commun,2019,55(63):9343-9346. doi: 10.1039/C9CC04893F
    [67] WANNAPAIBOON S, TU M, SUMIDA K, et al. Hierarchical structuring of metal-organic framework thin-films on quartz crystal microbalance (QCM) substrates for selective adsorption applications [J]. Journal of Materials Chemistry A,2015,3(46):23385-23394. doi: 10.1039/C5TA05620A
    [68] CHENG Y, WANG X, JIA C, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation [J]. Journal of Membrane Science,2017,539:213-223. doi: 10.1016/j.memsci.2017.06.011
    [69] CAMPAGNOL N, van ASSCHE T R C, LI M, et al. On the electrochemical deposition of metal-organic frameworks [J]. Journal of Materials Chemistry A,2016,4(10):3914-3925. doi: 10.1039/C5TA10782B
    [70] WORRALL S D, MANN H, ROGERS A, et al. Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes [J]. Electrochimica Acta,2016,197:228-240. doi: 10.1016/j.electacta.2016.02.145
    [71] ZHUANG J L, TERFORT A, WÖLL C. Formation of oriented and patterned films of metal-organic frameworks by liquid phase epitaxy: A review [J]. Coordination Chemistry Reviews,2016,307:391-424. doi: 10.1016/j.ccr.2015.09.013
    [72] HERMES S, SCHRÖDER F, CHELMOWSKI R, et al. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111) [J]. Journal of the American Chemical Society,2005,127(40):13744-13745. doi: 10.1021/ja053523l
    [73] XING J, GUO K, ZOU Z, et al. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation [J]. Chem Commun,2018,54(51):7046-7049. doi: 10.1039/C8CC03112F
    [74] VIRMANI E, ROTTER J M, MÄHRINGER A, et al. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted Conversion [J]. Journal of the American Chemical Society,2018,140(14):4812-4819. doi: 10.1021/jacs.7b08174
    [75] CHEN Y F, LI S Q, PEI X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings [J]. Angewandte Chemie: International Edition,2016,55(10):3419-3423. doi: 10.1002/anie.201511063
    [76] LIU Y, BAN Y, YANG W. Microstructural engineering and architectural design of metal-organic framework membranes [J]. Advanced Materials,2017,29(31):1606949.
    [77] BRADSHAW D, GARAI A, HUO J. Metal-organic framework growth at functional interfaces: Thin films and composites for diverse applications [J]. Chem Soc Rev,2012,41(6):2344-2381. doi: 10.1039/C1CS15276A
    [78] SO M C, JIN S, SON H J, et al. Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks [J]. Journal of the American Chemical Society,2013,135(42):15698-15701. doi: 10.1021/ja4078705
    [79] GU Z G, ZHANG J. Epitaxial growth and applications of oriented metal-organic framework thin films [J]. Coordination Chemistry Reviews,2019,378:513-532. doi: 10.1016/j.ccr.2017.09.028
    [80] BETARD A, FISCHER R A. Metal-organic framework thin films: From fundamentals to applications [J]. Chem Rev,2012,112(2):1055-1083. doi: 10.1021/cr200167v
    [81] SHEKHAH O, WANG H, KOWARIK S, et al. Step-by-step route for the synthesis of metal-organic frameworks [J]. Journal of the American Chemical Society,2007,129(49):15118-15119. doi: 10.1021/ja076210u
    [82] LI D J, LI Q H, GU Z G, et al. A surface-mounted MOF thin film with oriented nanosheet arrays for enhancing the oxygen evolution reaction [J]. Journal of Materials Chemistry A,2019,7(31):18519-18528. doi: 10.1039/C9TA04554F
    [83] de LUNA P, LIANG W, MALLICK A, et al. Metal-organic framework thin films on high-curvature nanostructures toward tandem electrocatalysis [J]. Acs Applied Materials & Interfaces,2018,10(37):31225-31232.
    [84] LI W, XUE S, WATZELE S, et al. Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks [J]. Angewandte Chemie: International Edition,2020,59(4):5837-5843.
    [85] JIA G, ZHANG W, FAN G, et al. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis [J]. Angewandte Chemie: International Edition,2017,56(44):13781-13785. doi: 10.1002/anie.201708385
    [86] LI D J, LEI S, WANG Y Y, et al. Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance [J]. Dalton Trans,2018,47(16):5558-5563. doi: 10.1039/C8DT00761F
    [87] MANDEMAKER L D B, RIVERA-TORRENTE M, DELEN G, et al. Nanoweb surface-mounted metal-organic framework films with tunable amounts of acid sites as tailored catalysts [J]. Chemistry: A European Journal,2019,26(3):691-698.
    [88] OU J, XIANG J, LIU J, et al. Surface-supported metal-organic framework thin-film-derived transparent CoS1.097@N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells [J]. ACS Appl Mater Interfaces,2019,11(16):14862-14870. doi: 10.1021/acsami.8b21626
    [89] GU Z G, PFRIEM A, HAMSCH S, et al. Transparent films of metal-organic frameworks for optical applications [J]. Microporous and Mesoporous Materials,2015,211:82-87. doi: 10.1016/j.micromeso.2015.02.048
    [90] BOWSER B H, BROWER L J, OHNSORG M L, et al. Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition [J]. Nanomaterials (Basel),2018,8(9):650.
    [91] GU Z G, BURCK J, BIHLMEIER A, et al. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds [J]. Chemistry: A European Journal,2014,20(32):9879-9882. doi: 10.1002/chem.201403524
    [92] GU Z G, ZHANG J. Epitaxial growth and applications of oriented metal-organic framework thin films [J]. Coordination Chemistry Reviews,2019,378:513-532. doi: 10.1016/j.micromeso.2015.02.048
    [93] ARSLAN H K, SHEKHAH O, WIELAND D C F, et al. Intercalation in layered metal−organic frameworks: Reversible inclusion of an extended π-system [J]. J Am Chem Soc,2011,133(21):8158-8161. doi: 10.1021/ja2037996
    [94] ARSLAN H K, SHEKHAH O, WOHLGEMUTH J, et al. High-throughput fabrication of uniform and homogenous MOF coatings [J]. Adv Funct Mater,2011,21(22):4228-4231. doi: 10.1002/adfm.201101592
    [95] GU Z G, FU W Q, WU X, et al. Liquid-phase epitaxial growth of a homochiral MOF thin film on poly(L-DOPA) functionalized substrate for improved enantiomer separation [J]. Chem Commun,2016,52(4):772-775. doi: 10.1039/C5CC07614E
    [96] LI Q, GIES J, YU X J, et al. Concentration-dependent seeding as a strategy for fabrication of densely packed SURMOF layers [J]. Chemistry: A European Journal,2020,26:5185-5189.
    [97] WANG Z, HENKE S, PAULUS M, et al. Defect creation in surface-mounted metal-organic framework thin films [J]. ACS Appl Mater Interfaces,2020,12(2):2655-2661. doi: 10.1021/acsami.9b18672
    [98] AHMAD S, LIU J, GONG C, et al. Photon up-conversion via epitaxial surface-supported metal-organic framework thin films with enhanced photocurrent [J]. ACS Applied Energy Materials,2018,1(2):249-253. doi: 10.1021/acsaem.7b00023
    [99] BEGUM S, HASSAN Z, BRÄSE S, et al. Metal-organic framework-templated biomaterials: Recent progress in synthesis, functionalization, and applications [J]. Accounts of Chemical Research,2019,52(6):1598-1610. doi: 10.1021/acs.accounts.9b00039
    [100] LI D J, GU Z G, VOHRA I, et al. Epitaxial growth of oriented metalloporphyrin network thin film for improved selectivity of volatile organic compounds [J]. Small,2017,13(17):1604035.
    [101] GU Z G, FU H, NEUMANN T, et al. Chiral porous metacrystals: Employing liquid-phase epitaxy to assemble enantiopure metal-organic nanoclusters into molecular framework pores [J]. ACS Nano,2016,10(1):977-983. doi: 10.1021/acsnano.5b06230
    [102] YE L, LIU J, GAO Y, et al. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency [J]. Journal of Materials Chemistry A,2016,4(40):15320-15326. doi: 10.1039/C6TA04801C
    [103] HEINKE L, WOLL C. Surface-mounted metal-organic frameworks: Crystalline and porous molecular assemblies for fundamental insights and advanced applications [J]. Adv Mater,2019,31(26):1806324. doi: 10.1002/adma.201806324
    [104] CHEN Z, GU Z G, FU W Q, et al. A confined fabrication of perovskite quantum dots in oriented MOF thin film [J]. Acs Applied Materials & Interfaces,2016,8(42):28737-28742.
    [105] VOHRA M I, LI D J, GU Z G, et al. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis [J]. Nanoscale,2017,9(23):7734-7738. doi: 10.1039/C7NR02284K
    [106] FU W Q, LIU M, GU Z G, et al. Liquid phase epitaxial growth and optical properties of photochromic guest-encapsulated MOF thin film [J]. Crystal Growth & Design,2016,16(9):5487-5492.
    [107] GUO W, LIU J, WEIDLER P G, et al. Loading of ionic compounds into metal-organic frameworks: A joint theoretical and experimental study for the case of La3+ [J]. Physical Chemistry Chemical Physics,2014,16(33):17918-17923. doi: 10.1039/C4CP02285H
    [108] LI D J, GU Z G, ZHANG J. Auto-controlled fabrication of a metal-porphyrin framework thin film with tunable optical limiting effects [J]. Chemical Science,2020,11(7):1935-1942. doi: 10.1039/C9SC05881H
    [109] GU Z G, LI D J, ZHENG C, et al. MOF-Templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications [J]. Angew Chem Int Ed Engl,2017,56(24):6853-6858. doi: 10.1002/anie.201702162
    [110] LIU X, KOZLOWSKA M, OKKALI T, et al. Photoconductivity in metal-organic framework (MOF) thin films [J]. Angewandte Chemie International Edition,2019,58(28):9590-9595. doi: 10.1002/anie.201904475
    [111] WANG Z, LIU J, LUKOSE B, et al. Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks [J]. Nano Lett,2014,14(3):1526-1529. doi: 10.1021/nl404767k
    [112] IKIGAKI K, OKADA K, TOKUDOME Y, et al. MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks [J]. Angew Chem Int Ed Engl,2019,58(21):6886-6890. doi: 10.1002/anie.201901707
    [113] LIU B, TU M, ZACHER D, et al. Multi variant surface mounted metal-organic frameworks [J]. Advanced Functional Materials,2013,23(30):3790-3798. doi: 10.1002/adfm.201202996
    [114] LIU J, HOU S, LI W, et al. , Recent approaches to design electrocatalysts based on metal-organic frameworks and their derivatives [J]. Chem Asian J,2019,14(20):3474-3501. doi: 10.1002/asia.201900748
    [115] DRAGÄSSER A, SHEKHAH O, ZYBAYLO O, et al. Redox mediation enabled by immobilised centres in the pores of a metal-organic framework grown by liquid phase epitaxy [J]. Chem Commun,2012,48(5):663-665. doi: 10.1039/C1CC16580A
    [116] LIU J, PARADINAS M, HEINKE L, et al. Film quality and electronic properties of a surface-anchored metal-organic framework revealed by using a multi-technique approach [J]. ChemElectroChem,2016,3(5):713-718. doi: 10.1002/celc.201500486
    [117] MUGNAINI V, TSOTSALAS M, BEBENSEE F, et al. Electrochemical investigation of covalently post-synthetic modified SURGEL coatings [J]. Chem Commun,2014,50(76):11129-11131. doi: 10.1039/C4CC03521F
    [118] JIA G Z W, FAN G, LI Z, et al. Three-dimensional hierarchical architectures derived from surface-mounted metal-organic framework membranes for enhanced electrocatalysis [J]. Angewandte Chemie International Edition,2018,47(16):5558-5563.
    [119] ZHANG K, GUO W, LIANG Z, et al. Metal-organic framework based nanomaterials for electrocatalytic oxygen redox reaction [J]. Science China Chemistry,2019,62(4):417-429. doi: 10.1007/s11426-018-9441-4
    [120] MIRZA S, CHEN H, CHEN S M, et al. Insight into Fe(Salen) encapsulated Co-porphyrin framework derived thin film for efficient oxygen evolution reaction [J]. Crystal Growth & Design,2018,18(11):7150-7157.
    [121] BEGUM S, HASHEM T, TSOTSALAS M, et al. Electrolytic conversion of sacrificial metal-organic framework thin films into an electrocatalytically active monolithic oxide coating for the oxygen-evolution reaction [J]. Energy Technology,2019,7(11):1900967. doi: 10.1002/ente.201900967
    [122] LI X, YANG X, XUE H, et al. Metal-organic frameworks as a platform for clean energy applications [J]. EnergyChem,2020,2(2):100027. doi: 10.1016/j.enchem.2020.100027
    [123] XIA Y, YANG Z, ZHU Y. Porous carbon-based materials for hydrogen storage: Advancement and challenges [J]. Journal of Materials Chemistry A,2013,1(33):9365-9381. doi: 10.1039/c3ta10583k
    [124] COMPTON O C, NGUYEN S T. Graphene oxide highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials [J]. Small,2010,6(6):711-723. doi: 10.1002/smll.200901934
    [125] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [126] GU Z G, ZHANG D X, FU W Q, et al. Facile synthesis of metal-loaded porous carbon thin films via carbonization of surface-mounted metal-organic frameworks [J]. Inorg Chem,2017,56(6):3526-3531. doi: 10.1021/acs.inorgchem.6b03140
    [127] CHEN H, GU Z G, MIRZA S, et al. Hollow Cu-TiO2/C nanospheres derived from a Ti precursor encapsulated MOF coating for efficient photocatalytic hydrogen evolution [J]. Journal of Materials Chemistry A,2018,6(16):7175-7181. doi: 10.1039/C8TA01034J
    [128] ZHOU W, HUANG D D, WU Y P, et al. Stable hierarchical bimetal-organic nanostructures as high performance electrocatalysts for the oxygen evolution reaction [J]. Angewandte Chemie: International Edition,2019,58(13):4227-4231. doi: 10.1002/anie.201813634
    [129] LI D J, GU Z G, ZHANG W, et al. Epitaxial encapsulation of homodispersed CeO2 in a cobalt-porphyrin network derived thin film for the highly efficient oxygen evolution reaction [J]. Journal of Materials Chemistry A,2017,5(38):20126-20130. doi: 10.1039/C7TA06580A
    [130] YOO H W A, GUO W, CHOI J, et al. Electrodeposition of WO3 nanoparticles into surface mounted metal-organic framework HKUST-1 thin films [J]. Nanotechnology,2017,28(11):115605. doi: 10.1088/1361-6528/aa5cf5
    [131] LEI S, LI Q H, KANG Y, et al. Epitaxial growth of oriented prussian blue analogue derived well-aligned CoFe2O4 thin film for efficient oxygen evolution reaction [J]. Applied Catalysis B: Environmental,2019,245:1-9. doi: 10.1016/j.apcatb.2018.12.036
    [132] ZHU B, XIA D, ZOU R. Metal-organic frameworks and their derivatives as bifunctional electrocatalysts [J]. Coordination Chemistry Reviews,2018,376:430-448. doi: 10.1016/j.ccr.2018.07.020
    [133] JIAO Y, ZHENG Y, JARONIEC M, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions [J]. Chemical Society Reviews,2015,44(8):2060-2086. doi: 10.1039/C4CS00470A
    [134] XIA B Y, YAN Y, LI N, et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst [J]. Nature Energy,2016,1(1):15006. doi: 10.1038/nenergy.2015.6
    [135] HU C, DAI L. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution [J]. Advanced Materials,2017,29(9):1604942. doi: 10.1002/adma.201604942
    [136] JIANG H, GU J, ZHENG X, et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER [J]. Energy & Environmental Science,2019,12(1):322-333.
  • 加载中
图(9)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  379
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 网络出版日期:  2020-12-04

表面配位金属-有机框架薄膜的制备及电催化应用

    通讯作者: 谷志刚, zggu@fjirsm.ac.cn
    作者简介: 靳志斌(1998—),男,硕士生,主要研究方向为表面配位聚合物薄膜;谷志刚,中国科学院福建物质结构研究所研究员,博士生导师。研究方向为金属有机聚合物薄膜在对映体识别分离、客体分子负载以及光学应用。已主持 国家自然基金(面上和青年项目)、中科院青年创新促进会、福建省基金、结构化学国家重点实验室课题。迄今为止在国际权威杂志Chem Soc Rev, Coord Chem Rev, Angew Chem, J Am Chem Soc, Nano Lett ACS Nano, Nat Commun, Appl Catal B: Environ Small, J Mater Chem A, ACS Appl Mater Interfaces等发表论文50篇。并入选中科院海西研究院“百人计划”、福建省引进高层次人才(境外B类)、中科院青年创新促进会会员。目前担任中科院青促会化学与材料分会理事
  • 1. 中国科学院福建物质结构研究所,福州 350002
  • 2. 中国科学院大学,北京 100049

摘要: 设计和开发高效电催化剂对能源的存储和转化具有十分重要的意义。金属-有机框架(MOF)在基底表面通过液相外延层层配位组装的MOF薄膜(也被称作表面配位MOF薄膜,SURMOF)具有厚度可调节、生长取向可控以及表面均匀致密等优点,在电催化反应领域得到了广泛的研究和应用。本文总结了SURMOF及其衍生薄膜(SURMOF-D)的制备及其在电催化应用中的研究进展。由于SURMOF及其衍生薄膜具有结构多样性和功能可调节性,可在析氧反应、析氢反应、氧化还原反应、二氧化碳还原反应、超级电容器和串联电催化等过程中提供丰富的活性位点并加速电荷转移,使电催化性能更加高效。本文还讨论了SURMOF作为一类新型的薄膜催化剂在电催化应用中的研究挑战和存在的问题。

English Abstract

  • 随着人类对能源需求的不断增加,能源存储与转化技术迅速发展,该技术引起了研究人员对新型电催化剂的广泛关注[1-3]。电催化剂能够加快电催化反应速率,在电池[4, 5]、超级电容器[6, 7]、电化学传感器和器件[8, 9]等领域发挥着重要作用。通常电催化反应包括析氢反应(HER)、析氧反应(OER)、氧化还原反应(ORR)、二氧化碳还原反应(CRR)、氮还原反应(NRR)等[10-14]。迄今为止,研究人员已经制备了多种电催化剂,例如贵金属基(Pt、RuO2、IrO2等)[15-17]和过渡金属基(金属氧化物、金属硫化物、金属磷化物等)[18]催化剂、氮化物[19]、碳材料[20, 21]以及杂化材料等[22-24],这些催化剂能够在一定程度上提高电化学反应的能量转换效率。然而,贵金属基催化剂制备成本高昂,非贵金属基催化剂存储性能较差,导致它们很难被大规模投入使用[25, 26]。因此,开发和设计新型的高效电催化剂对于能源存储与转化技术的发展具有重要意义。

    金属-有机框架(Metal organic frameworks,MOF),也被称为多孔配位聚合物(PCP)[27, 28],是由金属节点与有机配体通过配位形成的晶态材料[29]。MOF具有可调节的组成、多样的拓扑结构、高孔隙率和功能多样性等特点,被广泛应用于吸附与分离[30]、催化[31]、光学[32, 33]、磁性[34, 35]、质子传感[36, 37]及生物医药[38, 39]等领域。此外,MOF通常具有丰富的金属节点以及巨大的比表面积,非常适合作为电催化过程中的催化剂。科学家们已经研究了MOF在电解水[40, 41]、各类电池[42, 43]、超级电容器[44, 45]和CO2还原[46, 47]等过程中的催化性能。同时,科学家们利用MOF作为前驱体获得了MOF衍生材料,包括碳材料[48, 49]、金属单原子材料[50, 51]和金属(氧化态)化合物[52]等,与MOF相比,这些衍生的催化材料有效提高了电化学反应的催化性能和稳定性[53, 54]。此外,科学家们将MOF与功能性客体复合得到了MOF复合材料,该复合材料克服了传统MOF的电化学缺点,能有效改善电催化性能[55-57]。随着研究的深入,MOF材料在电化学领域显示出了独特的优势,但粉末形式的MOF基电催化剂在一定程度上会限制其实际应用。

    在实际电催化应用中,MOF薄膜电催化剂电荷转移迅速和催化位点充足,在催化反应中起关键性作用[58-60]。粉末MOF在电催化测试过程中需要添加聚合物黏合剂(Nafion溶液等)[61],而MOF薄膜直接在电极表面组装形成,能够有效促进电催化实际应用;MOF薄膜能够与其他功能材料结合成为复合催化剂,从而提高电催化活性[62, 63];在导电基底上生长不同形貌的MOF薄膜能够改善电荷转移和活性位点的应用[64, 65];此外,异质结MOF薄膜也是提高电催化性能的良好候选材料[66, 67]

    目前,已经报道了多种MOF薄膜的制备方法,例如旋转涂层法[68]、电化学沉积法[69, 70]、液相外延法[71, 72]、原位沉积法[73]、蒸汽辅助转换法(VAC)[74]以及热压印法(HoP)[75]等。值得注意的是,在制备MOF薄膜的方法中,液相外延(LPE)层层(LBL)组装法是指连续把功能化的基底交替循环浸入到金属盐和有机配体溶液中[76-78],通过配位键将MOF薄膜紧密地组装在基底表面,这种薄膜被称作表面配位MOF薄膜(SURMOF,图1[79, 80]。在SURMOF的制备过程中,基底提供了十分重要的生长表面。因此,需要首先对基底表面进行官能团修饰,可以采取多种方法修饰各类基底(金属、玻璃、聚合物等)的表面。通常使用表面活性剂自发吸附在基底表面形成有序的单分子层(SAM)。SAM包括头部、尾部和末端官能团,头部官能团可以是巯基、硅烷基、卡宾和磷酸基等,尾部官能团通常是烷基链,末端官能团可以是羧基、羟基、吡啶基和氨基等,SAM为SURMOF的制备提供了理想的配位点,还可以作为模板控制MOF薄膜的生长取向。由于SURMOF具有可精确调节的薄膜厚度、高度的生长取向及表面均匀致密等优点,其在电催化领域引起了科研工作者极大的研究兴趣。本文总结了SURMOF及其衍生薄膜(SURMOF-D)作为电催化剂的相关研究进展,特别是在HER、OER、ORR、CRR及超级电容器等方面的应用进展情况。

    图  1  SURMOF及其衍生薄膜的制备和电催化应用的示意图

    Figure 1.  Diagrammatic sketch for the preparation and the electrocatalytic applications of SURMOF and their derivative thin film

    得益于液相外延层层组装策略,SURMOF具有表面均匀、取向度高、厚度可控等优点,从而拓展了MOF薄膜功能的多样性,能够被有效应用于电催化领域。自2007年SURMOF被报道以来,科研人员已经对其电化学行为、CRR、OER以及串联电催化进行了研究;自2017年通过煅烧典型的SURMOF HKUST-1获得首个SURMOF-D样品以来,SURMOF-D因其高稳定性和良好的性能而被广泛应用于OER、ORR、HER和超级电容器等电催化领域。图2展示了SURMOF和SURMOF-D在电催化方面的研究进展[81-86]

    图  2  SURMOF和SURMOF-D在电催化应用中的研究进展

    Figure 2.  Historical progress of SURMOF and SURMOF-D in electrocatalytic application

    • 制备SURMOF的液相外延层层生长方法包括层层浸渍法、层层泵式法、层层喷雾法、层层流动法、层层旋涂法等[87-89]。这种薄膜的合成步骤可分为两步:(1)用官能团修饰基底,通过将基底浸入到SAM前驱体溶液中,使第1层金属离子在基底表面配位,例如,将Au基底浸入到16-巯基十六烷酸乙醇溶液中使基底表面羧基化[90]、用食人鱼溶液处理Si和玻璃基片使基底表面羟基化[91]等;(2)通过层层生长法将功能化的基底交替浸入到金属盐和有机配体溶液中,为了获得具有连续表面和高取向的薄膜,在每次交替浸入的间隔中,需用溶剂冲洗样品以除去未反应或过量的前驱体。图3(a)为SURMOF在SAM功能化基底表面的液相外延层层生长过程示意图。图3(b)示出了层层浸渍装置,浸渍法通常分为自动浸渍法和手动浸渍法[89]。自动浸渍法制备的SURMOF表面平整度较高,所需原料较少,比手动浸渍法更加方便快捷,但对设备的精密度要求更高。图3(c)示出了层层泵式装置,泵式法[93]可以通过加热/冷却泵系统调节反应温度,通过电脑调节泵的参数以控制反应速率和循环次数,操作相对简单,但反应时间较长,燃料及溶剂消耗较多。图3(d)示出了层层喷雾装置,喷雾法[94]以喷嘴喷雾系统为基础制备SURMOF,优点在于耗时短,可通过控制喷雾系统参数调节薄膜厚度和晶体取向。图3(e)示出了层层流动装置[95],先将毛细管柱内壁功能化,然后通过逐层法将反应物依次流过功能化的毛细管,从而达到组装SURMOF的目的。通过液相外延层层生长法组装的SURMOF具有独特的优势,如可通过控制生长周期次数来调节SURMOF的厚度,通过调节基底表面的官能团来控制薄膜的生长取向,通过精准的层层组装过程并用溶剂清洗除去过量的前驱体,可以获得表面均匀致密的薄膜[96, 97]。基于这些优点,SURMOF能够被广泛地应用于光电及传感器件[98, 99]、分子吸附与分离[100, 101]以及薄膜电催化[82, 102]等领域。

      图  3  SURMOF制备过程以及制备装置[91-95]

      Figure 3.  Schematic diagram of SURMOF preparation process and preparation device[91-95]

      由于MOF结构中存在丰富有序的纳米孔,SURMOF可作为一个理想的模板将客体物质负载到纳米孔中,从而拓宽它们的功能及应用[103]。最近,SURMOF被用作主体框架,精确地将不同功能的纳米物质(如金属纳米粒子、碳衍生物、量子点和有机聚合物材料等)负载到薄膜中形成了复合薄膜[104-106]。到目前为止,已经报道了多种负载方法,包括:(1)直接负载法[107],将客体一步直接负载到SURMOF中;(2)逐步负载法[104],分多步将客体前驱体负载到SURMOF的孔径中生成客体纳米粒子(NPs)从而在MOF孔隙中限制合成均匀细小的NP;(3)外延负载法[108],将功能化的基底通过层层法交替浸入到金属离子、有机配体以及客体溶液中,原位形成客体负载的SURMOF;(4)后处理负载策略[109],首先将客体前驱体负载到已制备好的SURMOF孔径中,然后用热、光、电等进行后处理形成客体负载SURMOF。负载的SURMOF结合主-客体的特点和功能,成为了一种先进的复合薄膜,提高了其功能和应用范围[110]

      此外,异质多层SURMOF[111-113]的液相外延层层生长也为制备多功能MOF薄膜提供了一种策略。异质薄膜可以是具有不同金属离子、有机配体和客体的晶格不匹配MOF,多功能异质SURMOF因具有不同的MOF特性而具有一定的应用潜力。

    • 由于SURMOF具有可调节的生长厚度、可控的生长取向、暴露活性位点多、形貌均匀等优点,可在电催化反应中作为优质的模板和候选材料[76, 114],从而在OER、CRR、串联电催化等领域展现出巨大的应用潜力。自2012年起,关于SURMOF电化学行为的研究便已出现。如Schlettwein和Woll课题组[116, 117]将二茂铁(Fc)负载到绝缘SURMOF HKUST-1薄膜中,实现了电荷之间的传输[115],此外,还对SURMOF的结构及其电化学行为之间的关系进行了研究。

      2019年,Gu课题组[82]首次采用液相外延层层生长法在泡沫铜(CF)上制备了三维MOF Co/Ni(BDC)2TED(H2BDC为1,4-苯二甲酸,TED为三乙二胺)纳米片阵列的定向薄膜。所获得的双金属MOF纳米片阵列薄膜沿着[001]晶向且无需使用黏合剂即可在基底表面生长,同时具有丰富的活性位点,提高了薄膜的电催化性能和循环稳定性。如图4(a)所示,通过层层泵式法使功能化的CF基底交替浸入到金属离子(Co2+、Ni2+或Co2+/Ni2+)的乙醇溶液和混合有机配体(BDC/TED)的乙醇溶液中,形成表面均匀的SURMOF M2BDC(TED)。扫描电镜形貌显示该超薄纳米片阵列薄膜具有一定的生长取向。在该工作中,他们通过循环40次生长周期获得M2(BDC)2TED@CF(M为Co,Ni和Co/Ni)薄膜,并研究了其在1 mol/L KOH溶液中的OER性能。线性扫描伏安曲线(LSV)(图4(b))显示,在CF基底上生长的Co2(BDC)2TED、Ni2(BDC)2TED、Co/Ni(BDC)2TED和IrO2这4种样品中,Co/Ni(BDC)2TED的催化活性最好,当电流密度为10 mA/cm2和50 mA/cm2时,过电位分别为260 mV和287 mV,这比在CF基底上沉积的商用IrO2要好得多。此外,当n(Co)/n(Ni)为1∶1时,催化剂的催化活性最高。图4(c)表明,在50 mA/cm2的电流密度下,由40个循环制备成的Co/Ni(BDC)2TED@CF具有最低的过电位(287 mV)。密度泛函理论(DFT)计算也证实了双金属取向纳米片阵列的Co/Ni(BDC)2TED薄膜具有更加高效的OER性能。

      图  4  (a)三维M2(BDC)2TED纳米片阵列薄膜在CF基底上的生长制备;(b)样品在CF基底上的LSV曲线;(c)具有不同液相外延周期的Co/Ni(BDC)2TED@CF的LSV曲线;(d)MOF@AuNMEs和AuNME控制的法拉第效率[82, 83]

      Figure 4.  (a)Preparation of the 3-D thin film of M2(BDC)2TED nanosheet arrays grown on CF; (b)LSV curves of samples on CF; (c)LSV curves for Co/Ni(BDC)2TED@CF with different LPE cycles; (d)Faraday efficiencies of MOF@AuNMEs and AuNME control[82, 83]

      2018年,Sargent课题组[83]报道了一种采用LBL生长方法在高曲率纳米金结构微电极(AuNME)上生长的串联电催化MOF薄膜。对AuNME在生产燃料的电催化CRR过程中的研究表明:在产生CO时,AuNME具有较高的法拉第效率,但是,将MOF与AuNME结合还原CO2以获得高效产物的策略在实际应用中仍然非常具有吸引力。通过液相外延层层生长策略制备了ZIF-8和Cu(bdc)·xH2O,并采用溶剂热法制备了RE-ndc-fcu-MOF和Al2(OH)2TCPP,样品的法拉第效率(图4(d))表明,MOF@AuNME薄膜的电催化还原CO2过程与AuNME的不同,MOF薄膜能够显著抑制AuNME中CO的生成并进一步产生CH4和C2H4。这项工作证明在纳米金属催化剂上生长的MOF薄膜能够被有效用于串联电催化过程。

      2016年,Ye等[102]制备了一种新型的SURMOF,在CO2向CO转化的过程中具有很高的法拉第效率。如图5(a)所示,采用层层喷涂法将金属盐(醋酸锌)和有机配体(乙醇溶液)交替喷涂到羟基功能化的FTO基底上,获得了沿着[001]方向高度生长的SURMOF,记为Re-SURMOF。当还原电位达到1.3 V(以标准氢电极为参照)以上时,循环伏安(CV)图(图5(b))显示,Re-SURMOF在CO2饱和电解质中的电流密度比在N2饱和电解质中的更高,表明存在CO2的还原。通过收集Re基连接器和Re-SURMOF的气体产物,在1.6 V时(以标准氢电极为参照),Re-SURMOF显示出了最高的法拉第效率,CO的产率为(93±5)%(图5(c))。电解2 h后周转次数为580次,且无其他液体产物生成。值得注意的是,密度泛函理论证明CO2还原反应的高催化性能要归功于Re-SURMOF沿[001]方向的有效电荷运输。

      图  5  (a)采用层层喷涂法在功能化FTO基底上制备Re-SURMOF的过程;Re-SURMOF的(b)循环伏安曲线和(c)法拉第效率[102]

      Figure 5.  (a)Fabrication process of Re-SURMOF on functionalized FTO substrate in a LBL spray fashion; (b) CV and (c) Faraday efficiency of Re-SURMOF[102]

      由于电极稳定性差、电荷转移速率低等缺点,大多数MOF不能直接用于电催化器件中。液相外延层层生长策略为拓宽MOF的多样性和功能性提供了可能,从而在一定程度上提高了SURMOF的电催化性能。

    • 为了拓展SURMOF的功能及应用范围,最近科学家们正致力于研究SURMOF-D材料。与电催化粉体MOF类似,这类衍生物涵盖范围广泛,包括碳基材料、氢氧化物、氧化物、硫化物和其他功能材料等[119-122]

      在这些材料中,MOF衍生碳基材料由于具有化学稳定性高、活性高、兼容性好等优点[123-125],在能源与环境应用领域显示出了巨大的应用潜力。通常SURMOF-D的制备方法是使用已制备的SURMOF或SURMOF复合材料作为前驱体在气体氛围(N2、Ar、S、P、NH3及O2等)下进行退火[54, 88, 120],这种方法首次采用导电基底作为SURMOF的生长表面,如将导电玻璃进行等离子体处理,使羟基端表面功能化以生长MOF薄膜。随后,采用液相外延层层生长法将功能化的基底交替浸入或喷涂金属离子及有机配体溶液。在不同的气氛下煅烧后,SURMOF即被转移到各种纳米复合材料中。根据MOF成分、客体种类以及处理条件的不同,衍生物复合材料通常分为金属纳米粒子、碳和杂原子基材料。在一定温度下对SURMOF进行煅烧能够提高它的导电能力并使其暴露出更多的活性位点,从而有利于其在能源催化中的应用。因此,采用简便有效的方式将SURMOF衍生为碳基薄膜已经成为增强其功能的普遍手段[109]

      2017年,Gu和Zhang等[126]报道了一种通过碳化SURMOF和金属氧团簇负载SURMOF制备的同质金属(或金属氧化物)掺杂碳薄膜(图6(a))。采用液相外延层层法在功能化羟基硅片基底上制备了HKUST-1薄膜,通过外延负载策略获得了客体(TinOC)负载的HKUST-1(TinOC@HKUST-1)。然后分别于N2气氛下在800 ℃煅烧5 h,获得了Cu@C和TiO2/Cu@C薄膜,可有效降解亚甲基蓝和还原硝基苯。2018年,Gu课题组[86]开发了一种包含金属氧化物和碳材料的螺旋碳管,可用于提高超级电容器的性能。如图6(b)所示,采用液相外延层层法在纺织物材料(来自T恤,命名为TS)上制备HKUST-1 SURMOF,然后在800 ℃下煅烧获得了带有金属纳米粒子复合分级碳材料的HKUST-1@TS-800样品。该样品同时具有MOF及纺织物的特性、良好的导电率和众多的活性位点,能够有效提升超级电容器的性能。同样地,在2018年,Gu课题组[127]还研发了一种独特的具有金属或金属氧化物的空心碳纳米球,其由核-壳结构的SiO2@SURMOF模板碳化而成,可有效用于光催化产氢(图6(c))。首先采用液相外延层层法在羟基端SiO2 NPs表面(SiO2@HKUST)制备SURMOF HKUST-1,将SiO2@HKUST-1浸入到异丙醇钛(Ti(O-ipr)4)溶液中,制得了Ti(O-ipr)4负载的SiO2@HKUST-1(记作SiO2@HKUST-1-Ti)。然后将SiO2@HKUST-1-Ti连续在400 ℃下碳化2 h和在N2气氛下800 ℃碳化3 h以形成SiO2@Cu-TiO2/C,最后用1 mol/L KOH溶液在80 ℃下蚀刻SiO2模板12 h,即可获得空心Cu-TiO2/C纳米球。

      图  6  SURMOF-D样品制备的示意图:(a)通过碳化SURMOF将金属纳米催化剂与碳薄膜结合[126];(b)Cu-MOF HKUST-1外延纺织涂层衍生分级碳布的制备工艺[86];(c)由核-壳结构的SiO2@SURMOF纳米球碳化出的Cu-TiO2(Cu-TiO2/C)空心碳纳米球[127]

      Figure 6.  Schematic illustration of the preparation examples of SURMOF-D:(a)Metal-nanocatalyst incorporated carbon thin films by carbonizing SURMOF[126]; (b)The prepared process of hierarchical carbon cloth derived from Cu-MOF HKUST-1 epitaxial coating on textiles[86]; (c)Hollow carbon nanospheres with Cu-TiO2(Cu-TiO2/C) carbonized from core-shell structural SiO2@SURMOF nanospheres[127]

      此外,还获得了其他衍生物,如SURMOF与二次反应物反应生成相关的磷化物、硫化物、硒化物以及特定条件下的氢氧化物[88, 119]等,这些衍生薄膜能够有效克服SURMOF的缺陷,从而提高电催化反应的性能。

    • SURMOF-D被广泛用于能源存储与转化领域,并在OER、ORR、三功能电催化、超级电容器等电催化领域展现出了优异的应用前景。OER是慢反应,所以水解反应的电催化效率会受到限制。对于OCR,电催化剂的性能在实际应用中发挥着至关重要的作用[128]。有趣的是,从电催化的角度来看,SURMOF-D正是研究析氧反应最重要的对象之一。2017年,Gu课题组[129]报道了一种由CeO2复合物负载的SURMOF衍生的CeO2负载钴卟啉网络薄膜,用于OER催化。如图7(a)所示,采用液相外延层层方法将Ce(Ⅲ)复合物负载到在羟基功能化的FTO基底上生长的PIZA-1上,制备了具有优先[110]生长取向的Ce(pdc)3@PIZA-1前驱体。在N2氛围下400 ℃煅烧后获得了CeO2@PIZA-1薄膜。这类CeO2负载的钴基材料具有表面均匀、导电率高及氧储存/释放能力强等优点,为改善OER活性提供了巨大的潜力。在不同温度下煅烧获得的PIZA-1粉末和不同循环次数的PIZA-1薄膜的极化曲线(图7(bc))显示,通过控制煅烧温度和厚度能够有效优化OER性能。因此,当几何电流密度为10 mA/cm2、煅烧温度为400 ℃时,具有20次循环次数的SURMOF Ce(pdc)3@PIZA-1显示出高效的电催化OER性能,其过电位仅为370 mV(图7(d))。

      图  7  (a)用于OER功能的CeO2@PIZA-1薄膜(衍生于羟基功能化FTO玻璃基底上,采用改良的LPE法制备的Ce(pdc)3负载PIZA-1薄膜)制备示意图;(b)N2氛围下PIZA-1粉末在不同温度下煅烧后得到的LSV极化曲线;(c)具有不同循环次数的PIZA-1-400/FTO极化曲线;(d)FTO,PIZA-1-400和CeO2@PIZA-1-400的极化曲线[129]

      Figure 7.  (a)Schematic illustration of the preparation of CeO2@PIZA-1 thin film derived from modified LPE fabrication process of the Ce(pdc)3 encapsulated PIZA-1 thin film on the OH-functionalized FTO glass substrate for OER performance; (b)LSV polarization curves of PIZA-1 powder after calcination at different temperatures under N2 atmosphere; (c)Polarization curves of PIZA-1-400/FTO with different cycles; (d)Polarization curves of bare FTO, PIZA-1-400 and CeO2@PIZA-1-400[129]

      2019年,Gu课题组[131]采用液相外延层层法制备了一种由高取向CoFe-PBA(PBA: Prussian Blue Analogus)薄膜衍生出的排列有序、介孔结构的CoFe2O4薄膜。将具有丰富三维大孔结构的功能化泡沫Ni依次浸入到Co(OAC)2·4H2O和K3[Fe(CN)6]水溶液中,然后在空气中350 ℃煅烧2 h,即获得了CoFe-PBA SURMOF薄膜。粉末催化剂易出现聚集和脱落现象,与之相比,所获得的二金属氧化物薄膜避免了表面活性剂和黏合剂易覆盖催化活性位点的缺点。SEM形貌分析(图8(a))显示,CoFe-PBA SURMOF薄膜表面均匀致密且具有[100]生长取向。在煅烧之后,CoFe-PBA薄膜被氧化为具有相同形貌的CoFe2O4薄膜(图8(b))。CoFe2O4薄膜的LSV曲线(图8(c))显示,在10 mA/cm2的几何电流密度下,CoFe2O4薄膜的过电位约为266 mV,表明其OER电催化活性高于RuO2、CoFe2O4粉末及CoFe-PBA薄膜。密度泛函理论计算表明,Co原子是主要的催化活性中心,双金属(Co/Ni)在电催化OER性能中具有协同效应。此外,电催化剂在高电流密度下具有长时间的稳定性。结果显示,在泡沫Ni基底上直接外延定向生长的PBA SURMOF是一种性能优良的衍生电催化剂,可用于改善OER性能。

      图  8  (a)CoFe-PBA薄膜与(b)CoFe2O4薄膜的SEM图片;(c)(1)CoFe2O4薄膜、(2)RuO2、(3)CoFe2O4粉末、(4)CoFe-PBA薄膜、(5)扫描速率为2 mV/s泡沫镍-350的LSV曲线;(d)NiFe-BDC(X)SURMOF(X=NH2, H, OCH3)的制备及其向SURMOF-D(1-X)的转化;(e)SURMOF-D(1-X)的阳极极化曲线(支撑在铂微电极上,直径为25 µm,以5 mV/s的扫描速率记录在氧饱和的0.1 mol/L KOH溶液中,温度为25 ℃,所有的极化曲线都显示在没有红外降补偿的情况下);(f)1-NH2在各种转速下的极化曲线(支撑在Au盘电极上)[84, 131]

      Figure 8.  SEM images of (a)CoFe-PBA and (b)CoFe2O4 thin film; (c)LSV curves of (1)CoFe2O4 thin film, (2)RuO2, (3)CoFe2O4 powder, (4)CoFe-PBA thin film, and (5)Ni foam-350 with a scan rate of 2 mV/s; (d)Preparation of NiFe-BDC(X)SURMOF(X=NH2, H, OCH3) and transformation of NiFe-BDC(X)SURMOF to SURMOF-D(1-X); (e)Anodic polarization curves of SURMOF-D(1-X)(Supported on a Pt microelectrode, diameter is 25 µm, recorded in O2-saturated 0.1 mol/L KOH at a scan rate of 5 mV/s, Temperature is 25 ℃, All polarization curves are shown without IR drop compensation); (f)Polarization curves of 1-NH2(supported on an Au disc electrode) at various rotational speeds[84, 131]

      双功能ORR和OER对全电池、金属空气电池和电解槽等[132-134]相关应用的设计具有重要意义,而改善ORR/OER性能的目标就是追求足够小的过电位窗口(∆EORR-OER)。

      2020年,Li等[84]开发了一种衍生自NiFe-BDC SURMOF且同时用于ORR和OER的双功能电催化剂。如图8(d)所示,在16-巯基十六烷酸修饰的金电极上制备出了优先[100]生长取向的NiFe-BDC SURMOF,由于催化剂中的晶格应变可以提高其催化活性,通过应变调制方法将各种官能团―Br,―OCH3和―NH2引入BDC形成NiFe-BDC(X)SURMOF(X=NH2, H, OCH3和Br),采用KOH对NiFe-BDC(X)SURMOF进行一步处理,即获得保留BDC的双金属NiFe杂化氢氧化物薄膜SURMOF-D(1-X)。在O2饱和的0.1 mol/L KOH溶液中,SURMOF-D(1-NH2)在300 mV的过电位下显示出最高的阳极电流密度,约为0.86 A/cm2图8(e))。这种高OER性能的SURMOF-D(1-NH2)拓展了双功能ORR/OER电催化剂的应用范围。SURMOF-D(1-NH2)的极化曲线(图8(f))表明,迄今为止,最窄的过电位窗口为0.69 V,在2个数量级的质量负载下具有出色的性能,低于其他典型的基准电催化剂。这样的双功能ORR/OER薄膜被认为可以调节反应中间体和催化活性位点的结合强度。

      为了实现能源存储与转化的一体化,人们广泛探索用三功能电催化剂代替昂贵的贵金属[135, 136]。例如2017年,Jia等[85]报道了SURMOF衍生的三维分级纳米结构催化剂,可有效用于ORR、HER和OER等电催化过程。如图9(a)所示,采用LPE法在NaOH处理过的三维大孔结构三聚氰胺海绵(MS)表面制备了ZIF-67 SURMOF薄膜。通过不同温度下的热解处理,获得了MSZIF-TT为热处理温度)。在不同温度下热解处理的MSZIF-T材料中,MSZIF-900的ORR极化曲线(图9(b))显示出更低的起始电位(0.91 V)和半波电位(0.84 V),以及更高的扩散限制电流密度(5.0 mA/cm2)。与其他3种电催化剂相比,MSZIF-900也被证实具有更高的HER和OER性能(图9(cd)),此外,MSZIF-900还显示出良好的电催化长期稳定性和优异的甲醇耐受性。结果证明,SURMOF衍生的纳米结构电催化剂具有丰富的活性位点和有效的质量传递,在ORR、HER和OER等电催化过程展现出了优异的催化活性。

      图  9  (a)MSZIF-T电催化剂的合成过程;(b)各种电催化剂在1600 r/min转速下的ORR极化曲线;MSZIF-900催化剂的(c)HER和(d)OER电化学性能[85]

      Figure 9.  (a)Illustration of the synthesis process for the MSZIF-T electrocatalysts; (b)ORR polarization curves for the various electrocatalysts at a rotation speed of 1600 r/min; (c)HER and (d)OER of electrochemical performance of the MSZIF-900 catalyst[85]

      SURMOF-D具有独特的纳米结构和多样的组分,能够为电催化提供大面积的催化活性位点并加速电荷转移。在能源存储与转化领域,这类薄膜也展现出了优异的电催化性能,是非常有前景的一类催化剂。

    • 本文介绍了SURMOF及其衍生薄膜的制备和电催化应用。液相外延层层组装MOF薄膜具有可控的生长厚度、高生长取向及表面均匀致密等优点,使其可以作为优质的前驱体或模板,从而拓展了其功能的多样性。一方面,SURMOF无需黏合剂即可与基底进行配位,并加速电催化过程中的电荷转移。另一方面,开发SURMOF-D可有效地拓展其功能和应用,如碳化和与二次反应物反应。

      尽管SURMOF已被证明具有一系列优点,但其性能的提升依然面临许多挑战,在大规模实际应用中仍存在一些问题有待解决:(1)电催化应用中的SURMOF种类非常少,大多数已报道的SURMOF为Cu基和Zn基SURMOF,这限制了其在电催化中的应用。因此,开发其他金属基(Co、Fe、Ni等)SURMOF对进一步的研究具有重要意义。通过交换金属离子和有机配体并调节合成条件,可以尝试获得新的SURMOF。(2)薄膜的形貌和界面缺陷会影响到电催化过程的性能及稳定性,因此可通过改善SURMOF的质量来提高电催化反应的稳定性和加速电荷转移。更换新鲜的浸渍液并用超声波处理样品,也能够提高薄膜的性能及稳定性。(3)设计和制备具有优异电催化性能的SURMOF材料,以满足工业和商业用途。(4)薄膜的结构及其电催化行为间的机理(SURMOF的生长取向、厚度、表面形貌对其性能的影响)需进一步研究。此外,还可为SURMOF开发新的电催化及光电催化体系,如固N2、固CO2及醇的氧化等。我们相信,SURMOF一定会进一步在实际应用中得到推广。

参考文献 (136)

目录

    /

    返回文章
    返回