高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氢键交联的低温自修复聚合物

高龙 俞慧涛 王健 冯奕钰 封伟

高龙, 俞慧涛, 王健, 冯奕钰, 封伟. 基于氢键交联的低温自修复聚合物[J]. 功能高分子学报, 2020, 33(6): 547-553. doi: 10.14133/j.cnki.1008-9357.20200608001
引用本文: 高龙, 俞慧涛, 王健, 冯奕钰, 封伟. 基于氢键交联的低温自修复聚合物[J]. 功能高分子学报, 2020, 33(6): 547-553. doi: 10.14133/j.cnki.1008-9357.20200608001
GAO Long, YU Huitao, WANG Jian, FENG Yiyu, FENG Wei. Low-Temperature Self-Healing Polymer Based on Hydrogen Bonding Crosslinking[J]. Journal of Functional Polymers, 2020, 33(6): 547-553. doi: 10.14133/j.cnki.1008-9357.20200608001
Citation: GAO Long, YU Huitao, WANG Jian, FENG Yiyu, FENG Wei. Low-Temperature Self-Healing Polymer Based on Hydrogen Bonding Crosslinking[J]. Journal of Functional Polymers, 2020, 33(6): 547-553. doi: 10.14133/j.cnki.1008-9357.20200608001

基于氢键交联的低温自修复聚合物

doi: 10.14133/j.cnki.1008-9357.20200608001
基金项目: 国家自然科学基金重点项目(51633007);国家自然科学基金面上项目(51973152)
详细信息
    作者简介:

    高龙:高 龙(1994—),男,山西忻州人,硕士生,主要研究方向为自修复导热复合材料的制备。E-mail:longgao@tju.edu.cn

    通讯作者:

    封 伟,E-mail:weifeng@tju.edu.cn

  • 中图分类号: O634.4

Low-Temperature Self-Healing Polymer Based on Hydrogen Bonding Crosslinking

  • 摘要: 针对聚合物存在的低温自修复速率低的问题,通过将具有柔性分子链的氨基封端的聚二甲基硅氧烷(PDMS)和丙二酰氯(C3H2Cl2O2)进行缩聚,制备得到多重氢键交联的聚二甲基硅氧烷交联聚合(H2PDMS)网络。柔性分子链有效降低了聚合物的玻璃化转变温度(Tg≈−120 ℃);H2PDMS在−25 ℃环境下,40 min后拉伸模量的修复效率高达97%。通过N―H和C=O之间多个氢键的可逆断裂与形成,实现了聚合物的室温快速修复以及低温高效修复,对未来设计并制备极端低温环境下修复材料具有重要意义。

     

  • 图  1  H2PDMS的合成

    Figure  1.  Synthesis of H2PDMS

    图  2  PDMS和H2PDMS的FT-IR光谱图

    Figure  2.  FT-IR spectra of PDMS and H2PDMS

    图  3  PDMS和H2PDMS的热性能曲线:(a)TGA曲线;(b)DSC曲线

    Figure  3.  Thermal performance curves of PDMS and H2PDMS:(a)TGA curves;(b)DSC curves

    图  4  H2PDMS的自修复机理示意图

    Figure  4.  Schematic diagram of self-healing mechanism of H2PDMS

    图  5  H2PDMS在25 ℃与–25 ℃修复不同时间的(a, c)拉伸测试曲线;(b, d)修复效率图

    Figure  5.  (a, c)Tensile test curves;(b, d)self-healing efficiency graphs of H2PDMS self-healed for different time at 25 ℃ and –25 ℃

    图  6  H2PDMS的自修复照片及微观形貌表征:(a)断裂;(b)室温修复1 min,(b1)修复前与(b2)修复后的划痕;(c)拉伸;(d)弯曲

    Figure  6.  Self-healing photos and micro-morphology characterization of H2PDMS:(a)break;(b)self-healing at room temperature for 1 min, crack (b1) before and (b2)after self-healing;(c)tension;(d)bending

  • [1] AISSA B, THERRIAULT D, HADDAD E, et al. Self-healing materials systems: Overview of major approaches and recent developed technologies[J/OL]. Advances in Materials Science and Engineering, https://doi.org/ 10.1155/2012/854203.
    [2] JUD K, KAUSCH H H, WILLIAMS J G. Fracture mechanics studies of crack healing and welding of polymers [J]. Journal of Materials Science,1981,16(1):204-210. doi: 10.1007/BF00552073
    [3] TURNER B N, STRONG R, GOLD S A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling [J]. Rapid Prototyping Journal,2014,20(3):192-204. doi: 10.1108/RPJ-01-2013-0012
    [4] ZHANG Y, QI Y H, ZHANG Z P. The influence of 2, 4-toluene diisocyanate content on the intrinsic self-healing performance of polyurethane at room-temperature [J]. Journal of Polymer Research,2015,22(5):94. doi: 10.1007/s10965-015-0744-0
    [5] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites [J]. Nature,2001,409(6822):794-797. doi: 10.1038/35057232
    [6] YUAN Y C, RONG M Z, ZHANG M Q, et al. Self-healing polymeric materials using epoxy/mercaptan as the healant [J]. Macromolecules,2008,41(14):5197-5202. doi: 10.1021/ma800028d
    [7] DRY C M. Smart Building Materials which Prevent Damage or Repair Themselves[J/OL]. MRS Online Proceedings Library Archive, https://doi.org/10.1557/PROC-276-311.
    [8] HAMILTON A R, SOTTOS N R, WHITE S R. Self-healing of internal damage in synthetic vascular materials [J]. Advanced Materials,2010,22(45):5159-5163. doi: 10.1002/adma.201002561
    [9] CORDIER P, TOURNILHAC F, SOULIÉ-ZIAKOVIC C, et al. Self-healing and thermoreversible rubber from supramolecular assembly [J]. Nature,2008,451(7181):977-980. doi: 10.1038/nature06669
    [10] SORDO F, MOUGNIER S J, LOUREIRO N, et al. Design of self-healing supramolecular rubbers with a tunable number of chemical cross-links [J]. Macromolecules,2015,48(13):4394-4402. doi: 10.1021/acs.macromol.5b00747
    [11] 时金凤, 赵娜, 符文鑫, 等. 基于可逆离子氢键构筑室温快速自修复聚硅氧烷弹性体 [J]. 功能高分子学报,2020,33(5):433-440. doi: 10.14133/j.cnki.1008-9357.20200228002
    [12] DENG G, LI F, YU H, et al. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions [J]. ACS Macro Letters,2012,1(2):275-279. doi: 10.1021/mz200195n
    [13] KIM S M, JEON H, SHIN S H, et al. Superior toughness and fast self-healing at room temperature engineered by transparent elastomers [J]. Advanced Materials,2018,30(1):1705145. doi: 10.1002/adma.201705145
    [14] FORTMAN D J, SNYDER R L, SHEPPARD D T, et al. Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange [J]. ACS Macro Letters,2018,7:1226-1231. doi: 10.1021/acsmacrolett.8b00667
    [15] LAI J C, MEI J F, JIA X Y, et al. A stiff and healable polymer based on dynamic-covalent boroxine bonds [J]. Advanced Materials,2016,28(37):8277-8282. doi: 10.1002/adma.201602332
    [16] BURATTINI S, COLQUHOUN H M, FOX J D, et al. A self-repairing, supramolecular polymer system: Healability as a consequence of donor-acceptor π-π stacking interactions [J]. Chemical Communications,2009(44):6717-6719. doi: 10.1039/b910648k
    [17] BURATTINI S, GREENLAND B W, MERINO D H, et al. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions [J]. Journal of the American Chemical Society,2010,132(34):12051-12058. doi: 10.1021/ja104446r
    [18] 童艳萍, 肖艳. 双重动态化学键交联水凝胶的制备及性能 [J]. 功能高分子学报,2020,33(3):305-312.
    [19] BURATTINI S, GREENLAND B W, HAYES W, et al. A supramolecular polymer based on tweezer-type π-π stacking interactions: Molecular design for healability and enhanced toughness [J]. Chemistry of Materials,2011,23(1):6-8. doi: 10.1021/cm102963k
    [20] LAI J C, JIA X Y, WANG D P, et al. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8
    [21] DAS A, SALLAT A, BÖHME F, et al. Ionic modification turns commercial rubber into a self-healing material [J]. ACS Applied Materials & Interfaces,2015,7(37):20623-20630.
    [22] 柏至伟, 张治斌, 张雅娟, 等. 基于配位键交联的自修复弹性体的合成及表征 [J]. 功能高分子学报,2020,33(2):180-186.
    [23] CAO Y, TAN Y J, LI S, et al. Self-healing electronic skins for aquatic environments [J]. Nature Electronics,2019,2(2):75-82. doi: 10.1038/s41928-019-0206-5
    [24] LI C H, WANG C, KEPLINGER C, et al. A highly stretchable autonomous self-healing elastomer [J]. Nature Chemistry,2016,8(6):618-624. doi: 10.1038/nchem.2492
    [25] LIU M, LIU P, LU G, et al. Multiphase-assembly of siloxane oligomers with improved mechanical strength and water-enhanced healing[J]. Angewandte Chemie, 2018, 130(35): 11412-11416.
    [26] LI R, FAN T, CHEN G, et al. Autonomous self-healing, antifreezing, and transparent conductive elastomers [J]. Chemistry of Materials,2020,32(2):874-881. doi: 10.1021/acs.chemmater.9b04592
    [27] GUO H, HAN Y, ZHAO W, et al. Universally autonomous self-healing elastomer with high stretchability[J]. Nature Communications, 2020, 11: 2037. https://doi.org/10.1038/s41467-020-15949-8.
  • 加载中
图(6)
计量
  • 文章访问数:  1625
  • HTML全文浏览量:  910
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 刊出日期:  2020-12-01

目录

    /

    返回文章
    返回