高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于硫杂萘二酰亚胺的席夫碱型聚合物电子传输材料

李建高 李晶 高希珂

李建高, 李晶, 高希珂. 基于硫杂萘二酰亚胺的席夫碱型聚合物电子传输材料[J]. 功能高分子学报, 2020, 33(2): 148-156. doi: 10.14133/j.cnki.1008-9357.20190523001
引用本文: 李建高, 李晶, 高希珂. 基于硫杂萘二酰亚胺的席夫碱型聚合物电子传输材料[J]. 功能高分子学报, 2020, 33(2): 148-156. doi: 10.14133/j.cnki.1008-9357.20190523001
LI Jiangao, LI Jing, GAO Xike. Schiff-Base Type Polymeric Electronic Transport Material Based on S-Heterocycles Fused Naphthalene Diimides[J]. Journal of Functional Polymers, 2020, 33(2): 148-156. doi: 10.14133/j.cnki.1008-9357.20190523001
Citation: LI Jiangao, LI Jing, GAO Xike. Schiff-Base Type Polymeric Electronic Transport Material Based on S-Heterocycles Fused Naphthalene Diimides[J]. Journal of Functional Polymers, 2020, 33(2): 148-156. doi: 10.14133/j.cnki.1008-9357.20190523001

基于硫杂萘二酰亚胺的席夫碱型聚合物电子传输材料

doi: 10.14133/j.cnki.1008-9357.20190523001
基金项目: 中国科学院青年创新促进会(2011192);国家自然科学基金(21674126)
详细信息
    作者简介:

    李建高(1989—),男,博士,主要研究方向为硫杂萘二酰亚胺类半导体材料的设计合成及光电性能。E-mail:lijg@sioc.ac.cn

    高希珂,博士,中国科学院上海有机化学研究所研究员,博士生导师。2008年于中国科学院化学研究所获理学博士学位,同年10月进入上海有机化学研究所工作。2015年获得国家优秀青年科学基金资助,入选中科院青年创新促进会首批优秀会员;2019年入选上海市优秀学术带头人计划。研究方向:有机光电功能分子与器件,侧重于新型有机共轭分子骨架的结构设计与合成。已在J Am Chem Soc, Angew Chem Int Ed, Chem Sci, Adv Mater等期刊上发表学术论文80余篇;以第一发明人申请专利16件,其中授权专利13件,部分专利已许可给公司使用

    通讯作者:

    高希珂,E-mail:gaoxk@mail.sioc.ac.cn

  • 中图分类号: O63

Schiff-Base Type Polymeric Electronic Transport Material Based on S-Heterocycles Fused Naphthalene Diimides

  • 摘要: 将苯甲醛基团引入到硫杂萘二酰亚胺共轭骨架中,与不同共轭程度和刚性的芳香二胺进行缩合反应,构筑了一类基于硫杂萘二酰亚胺的席夫碱型聚合物 P1P2P3 。采用紫外-可见吸收光谱(UV-Vis)、循环伏安等研究了材料的基本物理化学性质。这类聚合物具有良好的成膜性和较低的最低未占分子轨道能级(−4.07~−4.19 eV)。聚合物 P3 含有刚性萘单元,其UV-Vis的最大吸收波长(λmax)为754 nm,比 P1P2 分别红移了约76 nm和75 nm。X射线衍射(XRD)表明,聚合物 P1、P2、P3 的薄膜均呈现无定形的特征。以溶液甩膜法制备了此类聚合物的有机场效应晶体管(OFET)器件,其中聚合物 P3 的薄膜经300 ℃热退火,其OFET器件的电子迁移率可达2.47×10−3 cm2/(V·s),开关比为105,表明聚合物 P3 是一种可耐高温处理的n-型半导体材料。在聚合物共轭骨架中引入刚性的结构单元,可以有效调控吸收光谱、能级结构和薄膜形貌,进而提升OFET器件性能。

     

  • 图  1  P1P2P3的合成

    Figure  1.  Synthetic route of P1P2P3

    图  2  (a)P1P2P3的TG曲线;(b)P1、(c)P2,(d)P3的DSC曲线

    Figure  2.  (a) TG curves of P1P2, P3; DSC curves of (b)P1、(c)P2, (d)P3

    图  3  P1P2P3溶液(a)和薄膜(b)的紫外-可见吸收光谱

    Figure  3.  UV-Vis spectra of P1P2P3 in solution (a) and in thin film (b)

    图  4  P1P2P3薄膜的循环伏安曲线(a~c)和能级示意图(d)

    Figure  4.  CV curves (a—c) and graphical representation of energy level (d) of P1P2P3 in thin film

    图  5  P1(a)、P2(b)、P3(c)的OFET器件的转移曲线(左)和输出曲线(右)

    Figure  5.  Transfer (left) and output (right) curves of OFET devices based on P1(a)、P2(b)、P3(c)

    图  6  P1P2P3薄膜的XRD谱图

    Figure  6.  XRD patterns of thin films for P1P2P3

    图  7  P1(a),P2(b),P3(c)新制备(上)和最优性能(下)薄膜的AFM图

    Figure  7.  AFM images of as-spun (up) and optimized performance (down) of thin films for P1 (a), P2 (b), P3 (c)

    表  1  OFET器件性能参数

    Table  1.   Summary of OFET device performance

    PolymerT 1)/℃μe, ave1)/(cm2·V−1·s−1UT1)/VIon/Ioff1)
    P1As-spun4.96 × 10−5−4.16102~104
    2007.32 × 10−5−10.46102~103
    P2As-spun
    2001.82 × 10−4−0.44102~104
    P3As-spun6.25 × 10−412.45104~105
    3002.47 × 10−35.22104~105
    1)The average device characteristics obtained from more than 15 devices
    下载: 导出CSV
  • [1] SHIN H, LEE S, KIM K, et al. Blue phosphorescent organic light-emitting diodes using an exciplex forming co-host with the external quantum efficiency of theoretical limit [J]. Advanced Materials,2014,26(27):4730-4734. doi: 10.1002/adma.201400955
    [2] ZHAO Y, GUO Y, LIU Y. 25th Anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors [J]. Advanced Materials,2013,25(38):5372-5391. doi: 10.1002/adma.201302315
    [3] LI G, ZHU R, YANG Y. Polymer solar cells [J]. Nature Photonics,2012,6(3):153-161. doi: 10.1038/nphoton.2012.11
    [4] 袁峰, 周丹, 湛烈, 等. 有机太阳能电池空穴传输材料的研究进展 [J]. 功能高分子学报,2018,31(6):530-539.
    [5] WANG G, MELKONYAN F, FACCHETTI A, et al. All-polymer solar cells: recent progress, challenges, and prospects [J]. Angewandte Chemie International Edition,2019,58(13):4129-4142. doi: 10.1002/anie.201808976
    [6] CARSTEN B, HE F, SON H, et al. Stille polycondensation for synthesis of functional materials [J]. Chemical Reviews,2011,111(3):1493-1528. doi: 10.1021/cr100320w
    [7] MARROCCHI A, FACCHETTI, A, LANARI D, et al. Current methodologies for a sustainable approach to π-conjugated organic semiconductors [J]. Energy and Environmental Science,2016,9(3):763-786.
    [8] GAO Y, BAI J, SUI Y, et al. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains [J]. Macromolecules,2018,51(21):8752-8760. doi: 10.1021/acs.macromol.8b01112
    [9] TAKAHASHI M, MASUI K, SEKIGUCHI H, et al. Palladium-catalyzed C−H homocoupling of bromothiophene derivatives and synthetic application to well-defined oligothiophenes [J]. Journal of the American Chemical Society,2006,128(33):10930-10933. doi: 10.1021/ja060749v
    [10] BOHRA H, WANG M. Direct C–H arylation: A “Greener” approach towards facile synthesis of organic semiconducting molecules and polymers [J]. Journal of Materials Chemistry A,2017,5(23):11550-11571.
    [11] WU W, LI J, ZHAO Z, et al. Synthesis of largely π-extended naphthalenediimides via C–H activation towards highly soluble and narrow band-gap organic optoelectronic materials [J]. Organic Chemistry Frontiers,2017,4(5):823-827. doi: 10.1039/C7QO00061H
    [12] CAO C, XIAO M, YANG X, et al. Cyanovinylene-based copolymers synthesized by tin-free Knoevenagel polycondensation for high efficiency polymer solar cells [J]. Journal of Materials Chemistry C,2018,6(30):8020-8027. doi: 10.1039/C8TC02021C
    [13] ZHOU T, GONG Y, GUO J. Covalent organic frameworks: Design, synthesis and applications [J]. Journal of Functional Polymers,2018,31(3):189-215.
    [14] BABU H, BAI M, RAO M. Functional π conjugated two-dimensional covalent organic frameworks [J]. ACS Appled Materials and Interfaces,2019,11(12):11029-11060.
    [15] WURTHNER F, STOLTE M. Naphthalene and perylene diimides for organic transistors [J]. Chemical Communications,2011,47(18):5109-5115. doi: 10.1039/c1cc10321k
    [16] GUO X, FACCHETTI A, MARKS T. Imide- and amide-functionalized polymer semiconductors [J]. Chemical Reviews,2014,114(18):8943-9021. doi: 10.1021/cr500225d
    [17] KOBAISI M, BHOSALE S, LATHAM K, et al. Functional naphthalene diimides: Synthesis, properties, and applications [J]. Chemical Reviews,2016,116(19):11685-11796. doi: 10.1021/acs.chemrev.6b00160
    [18] SUN H, WANG L, WANG Y, et al. Imide-functionalized polymer semiconductors [J]. Chemistry A European Journal,2019,25(1):87-105. doi: 10.1002/chem.201803605
    [19] WANG Y, HASEGAWA T, MATSUMOTO H, et al. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding [J]. Journal of the American Chemical Society,2019,141(48):3566-3575.
    [20] CHEN Z, ZHENG Y, YAN H, et al. Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers: Synthesis and semiconducting properties in bottom-gate N-channel organic transistors [J]. Journal of the American Chemical Society,2009,131(1):8-9. doi: 10.1021/ja805407g
    [21] YAN H, CHEN Z, ZHENG Y, et al. A high-mobility electron-transporting polymer for printed transistors [J]. Nature,2009,457(7230):679-687. doi: 10.1038/nature07727
    [22] GAO X, HU Y. Development of n-type organic semiconductors for thin film transistors: A viewpoint of molecular design [J]. Journal of Materials Chemistry C,2014,2(17):3099-3117. doi: 10.1039/C3TC32046D
    [23] ZHANG F, HU Y, SCHUETTFORT T, et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2·V−1·s−1 [J]. Journal of the American Chemical Society,2013,135(6):2338-2349. doi: 10.1021/ja311469y
    [24] ZHAO Z, ZHANG F, HU Y, et al. Naphthalenediimides fused with 2-(1,3-dithiol-2-ylidene)acetonitrile: Strong electron-deficient building blocks for high-performance n-type polymeric semiconductors [J]. ACS Macro Letters,2014,3(11):1174-1177. doi: 10.1021/mz500603f
    [25] FELDBLYUM J, MCCREERY C, ANDREWS S, et al. Few-layer, large-area, 2D covalent organic framework semiconductor thin films [J]. Chemical Communications,2015,51(73):13894-13897. doi: 10.1039/C5CC04679C
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  6495
  • HTML全文浏览量:  1517
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 刊出日期:  2020-04-01

目录

    /

    返回文章
    返回