高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photoredox Controlled Living Polymerization

GONG Honghong MA Mingxuan ZHOU Yang ZHAO Yucheng GU Yu CHEN Mao

龚红红, 马明煊, 周杨, 赵宇澄, 谷宇, 陈茂. 光致氧化还原调控的活性聚合[J]. 功能高分子学报, 2019, 32(3): 271-291. doi: 10.14133/j.cnki.1008-9357.20190107001
引用本文: 龚红红, 马明煊, 周杨, 赵宇澄, 谷宇, 陈茂. 光致氧化还原调控的活性聚合[J]. 功能高分子学报, 2019, 32(3): 271-291. doi: 10.14133/j.cnki.1008-9357.20190107001
GONG Honghong, MA Mingxuan, ZHOU Yang, ZHAO Yucheng, GU Yu, CHEN Mao. Photoredox Controlled Living Polymerization[J]. Journal of Functional Polymers, 2019, 32(3): 271-291. doi: 10.14133/j.cnki.1008-9357.20190107001
Citation: GONG Honghong, MA Mingxuan, ZHOU Yang, ZHAO Yucheng, GU Yu, CHEN Mao. Photoredox Controlled Living Polymerization[J]. Journal of Functional Polymers, 2019, 32(3): 271-291. doi: 10.14133/j.cnki.1008-9357.20190107001

光致氧化还原调控的活性聚合

doi: 10.14133/j.cnki.1008-9357.20190107001
基金项目: 国家自然科学基金(21704016);中国博士后科学基金(2018M63200)
详细信息
    作者简介:

    陈茂:

  • 中图分类号: O632;O633.1

Photoredox Controlled Living Polymerization

More Information
    Author Bio:

    Professor Chen Mao was born in Chongqing, China. After receiving the B.S. degree at Wuhan University, he undertook his Ph.D. at the same place under the supervision of Prof. Lei Aiwen and Prof. Zhang Xumu. Later, he joined Prof. Stephen L Buchwald's group at MIT from 2012 to 2014. In Oct 2014, he joined Prof. Jeremiah A Johnson's group at the same place, and was promoted to research scientist in June 2016. Now, he is working as a Thousand-Talent Professor at Fudan University, and his group name is PolyMao (http://chenmaofudan.wixsite.com/polymao). The main research directions of PolyMao group include exploration of novel polymerization methodologies based on photochemistry and late transition metal catalysis; development of continuous-flow technologies to facilitate automated and efficient polymer production; design of smart materials via the combination of polymer chemistry and organic synthesis

    Corresponding author: 陈茂, E-mail:chenmao@fudan.edu.cn
  • 摘要: 近几年,光致氧化还原调控的可控自由基聚合得到了迅速发展,其适用单体范围广、反应条件温和,为合成聚合物和功能高分子材料提供了新方法。本综述对光致氧化还原调控活性聚合进行了总结与探讨,归纳整理了多种单体聚合的最新研究进展,为研究人员探索光催化聚合反应、设计合成功能高分子材料提供了新思路。

     

  • Figure  1.  Reaction mechanism for photo-controlled redical polymerization[25]

    Figure  2.  Selected photoredox catalysts used in photoredox-controlled radical polymerization of (meth)acrylates and (meth)acrylamides

    Figure  3.  Heterogeneous photoredox gel catalyst used in logical-controlled radical polymerization

    Figure  4.  Photoredox-controlled radical polymerizations of (meth)acrylates and (meth)acrylamides applied in different directions

    Figure  5.  One-pot synthesis of ABCDE multiblock copolymers with various segments

    Figure  6.  Automated synthesis of biohybrids using a DNA synthesizer

    Figure  7.  Photoredox-controlled radical polymerization of semifluorinated (meth)acrylates

    Figure  8.  Photoredox-controlled radical polymerization of vinyl ketones

    Figure  9.  Controlled cationic/radical polymerization with photoredox catalysts

    Figure  10.  Metal-free ring opening metathesis polymerization driven by light

    Figure  11.  Photoredox-controlled ring-opening polymerization of O-carboxyanhydrides

    Table  1.   Photoredox catalysts used in photoredox-CRP1)

    PC Eox* (PC·+/PC*) Eox(PC·+/PC) τf2)/ns τISC3)/μs φf2)/% φISC3)/% ref.
    Ir(ppy)3 -1.73 0.77 1.9 100 [49]
    Ir(ppy)3-2 -0.89 1.69 2.3 68 [75]
    Ru(bpy)32+ -0.81 1.29 1.1 100 [76]
    EY4) -1.60 0.72 2.1 48 32 [77]
    RB4) -0.68 1.09 0.5 9 77 [78]
    Perylene -1.87 0.98 5.5 5 000 3.6 2 [79-81]
    Ph-PTZ -2.10 0.68 4.5 420 1 [57, 70]
    4CzIPN -1.06 1.50 18 [82-85]
    BPBB-PTZ5) -1.94 0.76 4.7 61 [72]
    DN-DHPZ -1.64 0.23 [86-87]
    DBN-PXZ -1.80 0.65 480 [85, 88]
    1) Reduction potentials (V vs. standard calomel electrode (SCE)) of photoredox catalysts in MeCN; 2) Singlet state was determined at 298 K; 3) Triplet state was determined at 77 K; 4) Determined in methanol; 5) Determined in DMF; Ir(ppy)3-2: [Ir(dF(CF3)ppy)2(dtbbpy)](PF6); EY: Eosin Y; RB: Rose Bengal; 4CzIPN: 2, 4, 5, 6-tetra(9H-carbazol-9-yl)isophthalonitrile; BPBB-PTZ: 10-([1, 1′-biphenyl]-4-yl)-3, 7-bis(4-butylphenyl)-10H-phenothiazine; DN-DHPZ: 5, 10-di(naphthalen-1-yl)-5, 10-dihydrophenazine; DBN-PXZ: 3, 7-di([1, 1′-biphenyl]-4-yl)-10-(naphthalen-1-yl)-10H-phenoxazine
    下载: 导出CSV
  • [1] GUST D, MOORE T A, MOORE A L. Solar fuels via artificial photosynthesis[J]. Accounts of Chemical Research, 2009, 42(12):1890-1898. doi: 10.1021/ar900209b
    [2] GRAY H B, WINKLER J R. Electron transfer in proteins[J]. Annual Review of Biochemistry, 1996, 65:537-561. doi: 10.1146/annurev.bi.65.070196.002541
    [3] WASIELEWSKI M R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis[J]. Chemical Reviews, 1992, 92(3):435-61. doi: 10.1021/cr00011a005
    [4] GAO P, CAO H, DING Y, et al. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization[J]. ACS Macro Letters, 2016, 5(12):1327-1331. doi: 10.1021/acsmacrolett.6b00796
    [5] YU Q, DING Y, CAO H, et al. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25℃[J]. ACS Macro Letters, 2015, 4(11):1293-1296. doi: 10.1021/acsmacrolett.5b00699
    [6] GRAETZEL M. Artificial photosynthesis:Water cleavage into hydrogen and oxygen by visible light[J]. Accounts of Chemical Research, 1981, 14(12):376-384. doi: 10.1021/ar00072a003
    [7] MEYER T J. Chemical approaches to artificial photosynthesis[J]. Accounts of Chemical Research, 1989, 22(5):163-170. doi: 10.1021/ar00161a001
    [8] TAKEDA H, ISHITANI O. Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies[J]. Coordination Chemistry Reviews, 2010, 254(3-4):346-354. doi: 10.1016/j.ccr.2009.09.030
    [9] PRIER C K, RANKIC D A, MACMILLAN D W C. Visible light photoredox catalysis with transition metal complexes:Applications in organic synthesis[J]. Chemical Reviews, 2013, 113(7):5322-5363. doi: 10.1021/cr300503r
    [10] NARAYANAM J M R, STEPHENSON C R J. Visible light photoredox catalysis:Applications in organic synthesis[J]. Chemical Society Reviews, 2011, 40(1):102-113. doi: 10.1039/B913880N
    [11] SCHULTZ D M, YOON T P. Solar synthesis:Prospects in visible light photocatalysis[J]. Science, 2014, 343(6174):985. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_21561135d0a1bb1fb5a41737263f649f
    [12] KALYANASUNDARAM K, GRATZEL M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices[J]. Coordination Chemistry Reviews, 1998, 177:347-414. doi: 10.1016/S0010-8545(98)00189-1
    [13] LOWRY M S, BERNHARD S. Synthetically tailored excited states:Phosphorescent, cyclometalated iridium(Ⅲ) complexes and their applications[J]. Chemistry:A European Journal, 2006, 12(31):7970-7977. doi: 10.1002/(ISSN)1521-3765
    [14] ULBRICHT C, BEYER B, FRIEBE C, et al. Recent developments in the application of phosphorescent iridium(Ⅲ) complex systems[J]. Advanced Materials, 2009, 21(44):4418-4441. doi: 10.1002/adma.v21:44
    [15] HOWERTON B S, HEIDARY D K, GLAZER E C. Strained ruthenium complexes are potent light-activated anticancer agents[J]. Journal of the American Chemical Society, 2012, 134(20):8324-8327. doi: 10.1021/ja3009677
    [16] YAGCI Y, JOCKUSCH S, TURRO N J. Photoinitiated polymerization:Advances, challenges, and opportunities[J]. Macromolecules, 2010, 43(15):6245-6260. doi: 10.1021/ma1007545
    [17] TEHFE M A, LOURADOUR F, LALEVEE J, et al. Photopolymerization reactions:on the way to a green and sustainable chemistry[J]. Applied Sciences, 2013, 3(2):490-514. doi: 10.3390/app3020490
    [18] YAMAGO S, NAKAMURA Y Recent progress in the use of photoirradiation in living radical polymerization[J]. Polymer, 2013, 54(3):981-994. doi: 10.1016/j.polymer.2012.11.046
    [19] DADASHI-SILAB S, ATILLA TASDELEN M, YAGCI Y Photoinitiated atom transfer radical polymerization:Current status and future perspectives[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2014, 52(20):2878-2888. doi: 10.1002/pola.27327
    [20] FOUASSIER J P, ALLONAS X, BURGET D Photopolymerization reactions under visible lights:Principle, mechanisms and examples of applications[J]. Progress in Organic Coatings, 2003, 47(1):16-36. doi: 10.1016/S0300-9440(03)00011-0
    [21] ANDRZEJEWSKA E Photopolymerization kinetics of multifunctional monomers[J]. Progress in Polymer Science, 2001, 26(4):605-665. doi: 10.1016/S0079-6700(01)00004-1
    [22] XIAO P, ZHANG J, DUMUR F, et al. Visible light sensitive photoinitiating systems:Recent progress in cationic and radical photopolymerization reactions under soft conditions[J]. Progress in Polymer Science, 2015, 41:32-66. doi: 10.1016/j.progpolymsci.2014.09.001
    [23] DADASHI-SILAB S, DORAN S, YAGCI Y, et al. Photoinduced electron transfer reactions for macromolecular syntheses[J]. Chemical Reviews, 2016, 116:10212-10275. doi: 10.1021/acs.chemrev.5b00586
    [24] PAN X, TASDELEN M A, LAUN J, et al. Photomediated controlled radical polymerization[J]. Progress in Polymer Science, 2016, 62:73-125. doi: 10.1016/j.progpolymsci.2016.06.005
    [25] CHEN M, ZHONG M, JOHNSON J A. Light-controlled radical polymerization:Mechanisms, methods, and applications[J]. Chemical Reviews, 2016, 116(17):10167-10211. doi: 10.1021/acs.chemrev.5b00671
    [26] MCKENZIE T G, FU Q, UCHIYAMA M, et al. Beyond traditional RAFT:Alternative activation of thiocarbonylthio compounds for controlled polymerization[J]. Advanced Science, 2016, 3(9):1500394. doi: 10.1002/advs.201500394
    [27] ZHENG J, WANG C G, YAMAGUCHI Y, et al. Temperature-selective dual radical generation from alkyl diiodide:Applications to synthesis of asymmetric CABC multi-block copolymers and their unique assembly structures[J]. Angewandte Chemie International Edition, 2018, 57(6):1552-1556. doi: 10.1002/anie.v57.6
    [28] WANG C G, GOTO A. Solvent-selective reactions of alkyl iodide with sodium azide for radical generation and azide substitution and their application to one-pot synthesis of chain-end-functionalized polymers[J]. Journal of the American Chemical Society, 2017, 139(30):10551-10560. doi: 10.1021/jacs.7b05879
    [29] MUTHUKRISHNAN S, PAN E H, STENZEL M H, et al. Ambient temperature RAFT polymerization of acrylic acid initiated with ultraviolet radiation in aqueous solution[J]. Macromolecules, 2007, 40(9):2978-2980. doi: 10.1021/ma0703094
    [30] LIU G, SHI H, CUI Y, et al. Toward rapid aqueous RAFT polymerization of primary amine functional monomer under visible light irradiation at 25℃[J]. Polymer Chemistry, 2013(4):1176-1182. https://www.researchgate.net/publication/255763437_Toward_rapid_aqueous_RAFT_polymerization_of_primary_amine_functional_monomer_under_visible_light_irradiation_at_25_C
    [31] CHEN M, JOHNSON J A. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques[J]. Chemical Communications, 2015, 51(31):6742-6745. doi: 10.1039/C5CC01562F
    [32] ZHAO Y, YU M, ZHANG S, et al. A Well-defined versatile photoinitiator (salen)Co-CO2CH3 for visible light initiated living/controlled radical polymerization[J]. Chemical Science, 2015, 6:2979-2988. doi: 10.1039/C5SC00477B
    [33] LIU X, TIAN L, WU Z, et al. Visible-light-induced synthesis of polymers with versatile end groups mediated by organocobalt complexes[J]. Polymer Chemistry, 2017, 8(39):6033-6038. doi: 10.1039/C7PY01086A
    [34] LU Y, NEMOTO T, TOSAKA M, et al. Synthesis of structurally controlled hyperbranched polymers using a monomer having hierarchical reactivity[J]. Nature Communications, 2017, 8(1):1863. doi: 10.1038/s41467-017-01838-0
    [35] NAKAMURA Y, EBELING B, WOLPERS A, et al. Controlled radical polymerization of ethylene using organotellurium compounds[J]. Angewandte Chemie International Edition, 2018, 57(1):305-309. doi: 10.1002/anie.201709946
    [36] ZHENG X, YUE M, YANG P, et al. Cycloketyl radical mediated living polymerization[J]. Polymer Chemistry, 2012, 3(8):1982-1986. doi: 10.1039/c2py20117h
    [37] ASANDEI A D, ADEBOLU O I, SIMPSON C P. Mild-temperature Mn2(CO)10-photomediated controlled radical polymerization of vinylidene fluoride and synthesis of well-defined poly(vinylidene fluoride) block copolymers[J]. Journal of the American Chemical Society, 2012, 134(14):6080-6083. doi: 10.1021/ja300178r
    [38] KOUMURA K, SATOH K, KAMIGAITO M. Manganese-based controlled/living radical polymerization of vinyl acetate, methyl acrylate, and styrene:Highly active, versatile, and photoresponsive systems[J]. Macromolecules, 2008, 41(20):7359-7367. doi: 10.1021/ma801151s
    [39] SHANMUGAM S, XU J, BOYER C. Light-regulated polymerization under near-infrared/far-red irradiation catalyzed by bacteriochlorophyll α[J]. Angewandte Chemie International Edition, 2016, 55(3):1036-1040. doi: 10.1002/anie.201510037
    [40] MATYJASZEWSKI K, XIA J. Atom transfer radical polymerization[J]. Chemical Reviews, 2001, 101(9):2921-2990. doi: 10.1021/cr940534g
    [41] OUCHI M, TERASHIMA T, SAWAMOTO M. Transition metal-catalyzed living radical polymerization:Toward perfection in catalysis and precision polymer synthesis[J]. Chemical Reviews, 2009, 109(11):4963-5050. doi: 10.1021/cr900234b
    [42] MOAD G, RIZZARDO E, THANG S H. Radical addition-fragmentation chemistry in polymer synthesis[J]. Polymer, 2008, 49(5):1079-1131. doi: 10.1016/j.polymer.2007.11.020
    [43] MOAD G, RIZZARDO E, THANG S H. Toward living radical polymerization[J]. Accounts of Chemical Research, 2008, 41(9):1133-1142. doi: 10.1021/ar800075n
    [44] KEDDIE D J A. Guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization[J]. Chemical Society Reviews, 2014, 43(2):496-505. doi: 10.1039/C3CS60290G
    [45] HILL M R, CARMEAN R N, SUMERLIN B S. Expanding the scope of RAFT polymerization:Recent advances and new horizons[J]. Macromolecules, 2015, 48(16):5459-5469. doi: 10.1021/acs.macromol.5b00342
    [46] HAWKER C J, BOSMAN A W, HARTH E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chemical Reviews, 2001, 101(12):3661-3688. doi: 10.1021/cr990119u
    [47] NICOLAS J, GUILLANEUF Y, LEFAY C, et al. Nitroxide-mediated polymerization[J]. Progress in Polymer Science, 2013, 38(1):63-235. doi: 10.1016/j.progpolymsci.2012.06.002
    [48] SCIANNAMEA V, JEROME R, DETREMBLEUR C. in-situ Nitroxide-mediated radical polymerization (NMP) processes:Their understanding and optimization[J]. Chemical Reviews, 2008, 108(3):1104-1126. doi: 10.1021/cr0680540
    [49] FORS B P, HAWKER C J. Control of a living radical polymerization of methacrylates by light[J]. Angewandte Chemie International Edition, 2012, 51(35):8850-8853. doi: 10.1002/anie.v51.35
    [50] XU J, JUNG K, ATME A, et al. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance[J]. Journal of the American Chemical Society, 2014, 136(14):5508-5519. doi: 10.1021/ja501745g
    [51] SHANMUGAM S, XU J, BOYER C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths[J]. Journal of the American Chemical Society, 2015, 137(28):9174-9185. doi: 10.1021/jacs.5b05274
    [52] LALEVEE J, PETER M, DUMUR F, et al. Subtle ligand effects in oxidative photocatalysis with iridium complexes:Application to photopolymerization[J]. Chemistry:A European Journal, 2011, 17(52):15027-15031. doi: 10.1002/chem.201101445
    [53] LIU X, ZHANG L, CHENG Z, et al. Metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) via a visible light organic photocatalyst[J]. Polymer Chemistry, 2016, 7(3):689-700. doi: 10.1039/C5PY01765C
    [54] SHANMUGAM S, XU J, BOYER C. Photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of vinyl acetate and N-vinylpyrrolidinone:Kinetic and oxygen tolerance study[J]. Macromolecules, 2014, 47(15):4930-4942. doi: 10.1021/ma500842u
    [55] WANG J, RIVERO M, MUNOZ BONILLA A, et al. Natural RAFT polymerization:Recyclable-catalyst-aided, opened-to-air, and sunlight-photolyzed RAFT polymerizations[J]. ACS Macro Letters, 2016, 5(11):1278-1282. doi: 10.1021/acsmacrolett.6b00818
    [56] LIU Z, LV Y, AN Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance[J]. Angewandte Chemie International Edition, 2017, 56(44):13852-13856. doi: 10.1002/anie.201707993
    [57] TREAT N J, SPRAFKE H, KRAMER J W, et al. Metal-free atom transfer radical polymerization[J]. Journal of the American Chemical Society, 2014, 136(45):16096-16101. doi: 10.1021/ja510389m
    [58] TREAT N J, FORS B P, KRAMER J W, et al. Controlled radical polymerization of acrylates regulated by visible light[J]. ACS Macro Letters, 2014, 3(6):580-584. doi: 10.1021/mz500242a
    [59] KONKOLEWICZ D, SCHRODER K, BUBACK J, et al. Visible light and sunlight photoinduced ATRP with ppm of Cu catalyst[J]. ACS Macro Letters, 2012, 1(10):1219-1223. doi: 10.1021/mz300457e
    [60] CIFTCI M, TASDELEN M A, LI W, et al. Photoinitiated ATRP in inverse microemulsion[J]. Macromolecules, 2013, 46(24):9537-9543. doi: 10.1021/ma402058a
    [61] POELMA J E, FORS B P, MEYERS G F, et al. Fabrication of complex three-dimensional polymer brush nanostructures through light-mediated living radical polymerization[J]. Angewandte Chemie International Edition, 2013, 52(27):6844-6848. doi: 10.1002/anie.201301845
    [62] MELKER A, FORS B P, HAWKER C J, et al. Continuous flow synthesis of poly(methyl methacrylate) via a light-mediated controlled radical polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2015, 53:2693-2698. doi: 10.1002/pola.v53.23
    [63] XU J, JUNG K, CORRIGAN N A, et al. Aqueous photoinduced living/controlled polymerization:Tailoring for bioconjugation[J]. Chemical Science, 2014, 5(9):3568-3575. doi: 10.1039/C4SC01309C
    [64] SHEN L, LU Q, ZHU A, et al. Photocontrolled RAFT polymerization mediated by a supramolecular catalyst[J]. ACS Macro Letters, 2017, 6(6):625-631. doi: 10.1021/acsmacrolett.7b00343
    [65] TAN J, XU Q, ZHANG Y, et al. Room temperature synthesis of self-assembled AB/B and ABC/BC blends by photoinitiated polymerization-induced self-assembly (Photo-PISA) in water[J]. Macromolecules, 2018, 51(18):7396-7406. doi: 10.1021/acs.macromol.8b01456
    [66] TAN J, RAO X, WU X, et al. Photoinitiated RAFT dispersion polymerization:A straightforward approach toward highly monodisperse functional microspheres[J]. Macromolecules, 2012, 45(21):8790-8795. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228196749/
    [67] MA W, ZHANG X, MA Y, et al. Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts[J]. Polymer Chemistry, 2017, 8(23):3574-3585. doi: 10.1039/C7PY00408G
    [68] MA W, CHEN D, MA Y, et al. Visible-light induced controlled radical polymerization of methacrylates with Cu(dap)2Cl as a photoredox catalyst[J]. Polymer Chemistry, 2016, 7(25):4226-4236. doi: 10.1039/C6PY00687F
    [69] MIYAKE G M, THERIOT J C. Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light[J]. Macromolecules, 2014, 47(23):8255-8261. doi: 10.1021/ma502044f
    [70] PAN X, FANG C, FANTIN M, et al. Mechanism of photoinduced metal-free atom transfer radical polymerization:Experimental and computational studies[J]. Journal of the American Chemical Society, 2016, 138(7):2411-2425. doi: 10.1021/jacs.5b13455
    [71] DADASHI-SILAB S, PAN X, MATYJASZEWSKI K. Phenyl benzo[b] phenothiazine as a visible light photoredox catalyst for metal-free atom transfer radical polymerization[J]. Chemistry:A European Journal, 2017, 23(25):5972-5977. doi: 10.1002/chem.201605574
    [72] ZHAO Y, GONG H, JIANG K, et al. Organocatalyzed photoredox polymerization from aromatic sulfonyl halides:Facilitating graft from aromatic C-H bonds[J]. Macromolecules, 2018, 51(3):938-946. doi: 10.1021/acs.macromol.8b00134
    [73] PERCEC V, BARBOIU B, NEUMANN A, et al. Metal-catalyzed "living" radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis[J]. Macromolecules, 1996, 29(10):3665-3668. doi: 10.1021/ma960061a
    [74] PERCEC V, BARBOIU B. "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and CuI(bpy)nCl[J]. Macromolecules, 1995, 28(23):7970-7972. doi: 10.1021/ma00127a057
    [75] LOWRY M S, GOLDSMITH J I, SLINKER J D, et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(Ⅲ) complex[J]. Chemistry of Materials, 2005, 17(23):5712-5719. doi: 10.1021/cm051312+
    [76] JURIS A, BALZANI V, BELSER P, et al. Characterization of the excited state properties of some new photosensitizers of the ruthenium (polypyridine) family[J]. Helvetica Chimica Acta, 1981, 64(7):2175-2182. doi: 10.1002/(ISSN)1522-2675
    [77] ZHANG X F, ZHANG I, LIU L. Photophysics of halogenated fluoresceins:Involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states[J]. Photochemistry and Photobiology, 2010, 86(3):492-498. doi: 10.1111/php.2010.86.issue-3
    [78] SHEN T, ZHAO Z G, YU Q, et al. Photosensitized reduction of benzil by heteroatom-containing anthracene dyes[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1989, 47(2):203-212. doi: 10.1016/1010-6030(89)87066-2
    [79] BACHMAN J C, KAVIAN R, GRAHAM D J, et al. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes[J]. Nature Communications, 2015, 67040. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f19038766fa87b0a429cc87f1cd45e7
    [80] KIKUCHI K, NIWA T, TAKAHASHI Y, et al. Quenching mechanism in a highly exothermic region of the Rehm-Weller relationship for electron-transfer fluorescence quenching[J]. The Journal of Physical Chemistry A, 1993, 97(19):5070-5073. doi: 10.1021/j100121a037
    [81] SINGH-RACHFORD T N, CASTELLANO F N. Triplet sensitized red-to-blue photon upconversion[J]. The Journal of Physical Chemistry Letters, 2010, 1(1):195-200. doi: 10.1021/jz900170m
    [82] BRUNNER K, VAN DIJKEN A, B RNER H, et al. Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes:Tuning the HOMO level without influencing the triplet energy in small molecules[J]. Journal of the American Chemical Society, 2004, 126(19):6035-6042. doi: 10.1021/ja049883a
    [83] ISHIMATSU R, MATSUNAMI S, KASAHARA T, et al. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence[J]. Angewandte Chemie International Edition, 2014, 53(27):6993-6996. doi: 10.1002/anie.201402615
    [84] JUSTIN THOMAS K R, LIN J T, TAO Y-T, et al. Light-emitting carbazole derivatives:Potential electroluminescent materials[J]. Journal of the American Chemical Society, 2001, 123(38):9404-9411. doi: 10.1021/ja010819s
    [85] THERIOT J C, MCCARTHY B G, LIM C H, et al. Organocatalyzed atom transfer radical polymerization:Perspectives on catalyst design and performance[J]. Macromolecular Rapid Communications, 2017, 38(13):1700040. doi: 10.1002/marc.201700040
    [86] LIM C-H, RYAN M D, MCCARTHY B G, et al. Intramolecular charge transfer and ion pairing in N, N-diaryl dihydrophenazine photoredox catalysts for efficient organocatalyzed atom transfer radical polymerization[J]. Journal of the American Chemical Society, 2017, 139(1):348-355. doi: 10.1021/jacs.6b11022
    [87] THERIOT J C, LIM C-H, YANG H, et al. Organocatalyzed atom transfer radical polymerization driven by visible light[J]. Science, 2016, 352(6289):1082-1086. doi: 10.1126/science.aaf3935
    [88] PEARSON R M, LIM C-H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. Journal of the American Chemical Society, 2016, 138(35):11399-11407. doi: 10.1021/jacs.6b08068
    [89] THERIOT J C, MCCARTHY B G, LIM C H, et al. Organocatalyzed atom transfer radical polymerization:Perspectives on catalyst design and performance[J]. Macromolecular Rapid Communications, 2017, 38(13):1700040. doi: 10.1002/marc.201700040
    [90] PEARSON R M, LIM C H, MCCARTHY B G, et al. Organocatalyzed atom transfer radical polymerization using N-aryl phenoxazines as photoredox catalysts[J]. J Am Chem Soc, 2016, 138(35):11399-11407. doi: 10.1021/jacs.6b08068
    [91] KUTAHYA C, ALLUSHI A, ISCI R, et al. Photoinduced metal-free atom transfer radical polymerization using highly conjugated thienothiophene derivatives[J]. Macromolecules, 2017, 50(17):6903-6910. doi: 10.1021/acs.macromol.7b01335
    [92] CHEN M, DENG S, GU Y, et al. Logic-controlled radical polymerization with heat and light:Multiple-stimuli switching of polymer chain growth via a recyclable, thermally responsive gel photoredox catalyst[J]. Journal of the American Chemical Society, 2017, 139(6):2257-2266. doi: 10.1021/jacs.6b10345
    [93] ZHOU H, JOHNSON J A. Photo-controlled growth of telechelic polymers and end-linked polymer gels[J]. Angewandte Chemie International Edition, 2013, 52(8):2235-2238. doi: 10.1002/anie.201207966
    [94] CHEN M, CU Y, SINGH A, et al. Living additive manufacturing:Transformation of parent gels into diversely functionalized daughter gels made possible by visible light photoredox catalysis[J]. ACS Central Science, 2017, 3(2):124-134. doi: 10.1021/acscentsci.6b00335
    [95] SHANMUGAM S, XU J, BOYER C. Living additive manufacturing[J]. ACS Central Science, 2017, 3(2):95-96. doi: 10.1021/acscentsci.7b00025
    [96] SHANMUGAM S, XU J, BOYER C. A logic gate for external regulation of photopolymerization[J]. Polymer Chemistry, 2016, 7(42):6437-6449. doi: 10.1039/C6PY01361A
    [97] LIANG Y, BERGBREITER D E. Recyclable polyisobutylene (PIB)-bound organic photoredox catalyst catalyzed polymerization reactions[J]. Polymer Chemistry, 2016, 7(12):2161-2165. doi: 10.1039/C6PY00114A
    [98] SHANMUGAM S, XU S, ADNAN N N M, et al. Heterogeneous photocatalysis as a means for improving recyclability of organocatalyst in "living" radical polymerization[J]. Macromolecules, 2018, 51(3):779-790. doi: 10.1021/acs.macromol.7b02215
    [99] YANG Q, LALEV E J, POLY J. Development of a robust photocatalyzed ATRP mechanism exhibiting good tolerance to oxygen and inhibitors[J]. Macromolecules, 2016, 49(20):7653-7666. doi: 10.1021/acs.macromol.6b01808
    [100] FU Q, RUAN Q, MCKENZIE T G, et al. Development of a robust PET-RAFT polymerization using graphitic carbon nitride (g-C3N4)[J]. Macromolecules, 2017, 50(19):7509-7516. doi: 10.1021/acs.macromol.7b01651
    [101] DA M. COSTA L P, MCKENZIE T G, SCHWARZ K N, et al. Observed photoenhancement of RAFT polymerizations under fume hood lighting[J]. ACS Macro Letters, 2016, 5(11):1287-1292. doi: 10.1021/acsmacrolett.6b00828
    [102] FU Q, XIE K, MCKENZIE T G, et al. Trithiocarbonates as intrinsic photoredox catalysts and RAFT agents for oxygen tolerant controlled radical polymerization[J]. Polymer Chemistry, 2017, 8(9):1519-1526. doi: 10.1039/C6PY01994C
    [103] SHANMUGAM S, XU J, BOYER C. Aqueous RAFT photopolymerization with oxygen tolerance[J]. Macromolecules, 2016, 49(24):9345-9357. doi: 10.1021/acs.macromol.6b02060
    [104] SHANMUGAM S, XU J, BOYER C. Photoinduced oxygen reduction for dark polymerization[J]. Macromolecules, 2017, 50(5):1832-1846. doi: 10.1021/acs.macromol.7b00192
    [105] CORRIGAN N, XU J, BOYER C. A photoinitiation system for conventional and controlled radical polymerization at visible and NIR wavelengths[J]. Macromolecules, 2016, 49(9):3274-3285. doi: 10.1021/acs.macromol.6b00542
    [106] YEOW J, SHANMUGAM S, CORRIGAN N, et al. A polymerization-induced self-assembly approach to nanoparticles loaded with singlet oxygen generators[J]. Macromolecules, 2016, 49(19):7277-7285. doi: 10.1021/acs.macromol.6b01581
    [107] XU S, NG G, XU J, et al. 2-(Methylthio)ethyl methacrylate:A versatile monomer for stimuli responsiveness and polymerization-induced self-assembly in the presence of air[J]. ACS Macro Letters, 2017, 6(11):1237-1244. doi: 10.1021/acsmacrolett.7b00731
    [108] DING Z, DING M, GAO C, et al. in situ Synthesis of coil-coil diblock copolymer nanotubes and tubular Ag/polymer nanocomposites by RAFT dispersion polymerization in poly(ethylene glycol)[J]. Macromolecules, 2017, 50(19):7593-7602. doi: 10.1021/acs.macromol.7b01363
    [109] YEOW J, SUGITA O R, BOYER C. Visible light-mediated polymerization-induced self-assembly in the absence of external catalyst or initiator[J]. ACS Macro Letters, 2016, 5(5):558-564. doi: 10.1021/acsmacrolett.6b00235
    [110] CORRIGAN N, ROSLI D, JONES J W J, et al. Oxygen tolerance in living radical polymerization:Investigation of mechanism and implementation in continuous flow polymerization[J]. Macromolecules, 2016, 49(18):6779-6789. doi: 10.1021/acs.macromol.6b01306
    [111] CORRIGAN N, ALMASRI A, TAILLADES W, et al. Controlling molecular weight distributions through photoinduced flow polymerization[J]. Macromolecules, 2017, 50(21):8438-8448. doi: 10.1021/acs.macromol.7b01890
    [112] XU J, FU C, SHANMUGAM S, et al. Synthesis of discrete oligomers by sequential PET-RAFT single-unit monomer insertion[J]. Angewandte Chemie International Edition, 2017, 56(29):8376-8383. doi: 10.1002/anie.201610223
    [113] FU C, HUANG Z, HAWKER C J, et al. RAFT-mediated, visible light-initiated single unit monomer insertion and its application in the synthesis of sequence-defined polymers[J]. Polymer Chemistry, 2017, 8(32):4637-4643. doi: 10.1039/C7PY00713B
    [114] FU C, XU J, KOKOTOVIC M, et al. One-pot synthesis of block copolymers by orthogonal ring-opening polymerization and PET-RAFT polymerization at ambient temperature[J]. ACS Macro Letters, 2016, 5(4):444-449. doi: 10.1021/acsmacrolett.6b00121
    [115] FIGG C A, HICKMAN J D, SCHEUTZ G M, et al. Color-coding visible light polymerizations to elucidate the activation of trithiocarbonates using Eosin Y[J]. Macromolecules, 2018, 51(4):1370-1376. doi: 10.1021/acs.macromol.7b02533
    [116] ANASTASAKI A, OSCHMANN B, WILLENBACHER J, et al. One-pot synthesis of ABCDE multiblock copolymers with hydrophobic, hydrophilic, and semi-fluorinated segments[J]. Angewandte Chemie International Edition, 2017, 56(46):14483-14487. doi: 10.1002/anie.201707646
    [117] NIU J, LUNN D J, PUSULURI A, et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization[J]. Nature Chemistry, 2017, 9:537-545. doi: 10.1038/nchem.2713
    [118] RIBELLI T G, KONKOLEWICZ D, BERNHARD S, et al. How are radicals (re)generated in photochemical ATRP[J]. Journal of the American Chemical Society, 2014, 136(38):13303-13312. doi: 10.1021/ja506379s
    [119] RIBELLI T G, KONKOLEWICZ D, PAN X, et al. Contribution of photochemistry to activator regeneration in ATRP[J]. Macromolecules, 2014, 47(18):6316-6321. doi: 10.1021/ma501384q
    [120] ANASTASAKI A, NIKOLAOU V, ZHANG Q, et al. Copper(Ⅱ)/tertiary amine synergy in photoinduced living radical polymerization:Accelerated synthesis of ω-functional and α, ω-heterofunctional poly(acrylates)[J]. Journal of the American Chemical Society, 2014, 136(3):1141-1149. doi: 10.1021/ja411780m
    [121] FRICK E, ANASTASAKI A, HADDLETON D M, et al. Enlightening the mechanism of copper mediated photo RDRP via high-resolution mass spectrometry[J]. Journal of the American Chemical Society, 2015, 137(21):6889-6896. doi: 10.1021/jacs.5b03048
    [122] ZHU C, SCHNEIDER E K, NIKOLAOU V, et al. Hydrolyzable poly[poly(ethylene glycol) methyl ether acrylate]-colistin prodrugs through copper-mediated photoinduced living radical polymerization[J]. Bioconjugate Chemistry, 2017, 28(7):1916-1924. doi: 10.1021/acs.bioconjchem.7b00242
    [123] PAN X, LATHWAL S, MACK S, et al. Automated synthesis of well-defined polymers and biohybrids by atom transfer radical polymerization using a DNA synthesizer[J]. Angewandte Chemie International Edition, 2017, 56(10):2740-2743. doi: 10.1002/anie.201611567
    [124] AMEDURI B, BOUTEVIN B, KOSTOV G. Fluoroelastomers:Synthesis, properties and applications[J]. Progress in Polymer Science, 2001, 26(1):105-187. doi: 10.1016/S0079-6700(00)00044-7
    [125] VITALE A, BONGIOVANNI R, AMEDURI B. Fluorinated oligomers and polymers in photopolymerization[J]. Chemical Reviews, 2015, 115(16):8835-8866. doi: 10.1021/acs.chemrev.5b00120
    [126] DU L, KELLY J Y, ROBERTS G W, et al. Fluoropolymer synthesis in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2009, 47(3):447-457. doi: 10.1016/j.supflu.2008.11.011
    [127] IMAE T. Fluorinated polymers[J]. Current Opinion in Colloid & Interface Science, 2003, 8(3):307-314. http://d.old.wanfangdata.com.cn/Periodical/gfzclkxygc200303011
    [128] BABUDRI F, FARINOLA G M, NASO F, et al. Fluorinated organic materials for electronic and optoelectronic applications:The role of the fluorine atom[J]. Chemical Communications, 2007(10):1003-1022. doi: 10.1039/B611336B
    [129] HIRAO A, SUGIYAMA K, YOKOYAMA H. Precise synthesis and surface structures of architectural per-and semifluorinated polymers with well-defined structures[J]. Progress in Polymer Science, 2007, 32(12):1393-1438. doi: 10.1016/j.progpolymsci.2007.08.001
    [130] HANSEN N M L, JANKOVA K, HVILSTED S. Fluoropolymer materials and architectures prepared by controlled radical polymerizations[J]. European Polymer Journal, 2007, 43(2):255-293. doi: 10.1016/j.eurpolymj.2006.11.016
    [131] REISINGER J J, HILLMYER M A. Synthesis of fluorinated polymers by chemical modification[J]. Progress in Polymer Science, 2002, 27(5):971-1005. doi: 10.1016/S0079-6700(02)00004-7
    [132] GONG H, GU Y, CHEN M Controlled/living radical polymerization of semifluorinated (meth)acrylates[J]. Synlett, 2018, 1543-1551. http://cn.bing.com/academic/profile?id=4e44990737b7396dc4e24e787099a59b&encoded=0&v=paper_preview&mkt=zh-cn
    [133] DISCEKICI E H, ANASTASAKI A, KAMINKER R, et al. Light-mediated atom transfer radical polymerization of semi-fluorinated (meth)acrylates:Facile access to functional materials[J]. Journal of the American Chemical Society, 2017, 139(16):5939-5945. doi: 10.1021/jacs.7b01694
    [134] DISCEKICI E H, PESTER C W, TREAT N J, et al. Simple benchtop approach to polymer brush nanostructures using visible-light-mediated metal-free atom transfer radical polymerization[J]. ACS Macro Letters, 2016, 5(2):258-262. doi: 10.1021/acsmacrolett.6b00004
    [135] PESTER C W, NARUPAI B, MATTSON K M, et al. Engineering surfaces through sequential stop-flow photopatterning[J]. Advanced Materials, 2016, 28(42):9292-9300. doi: 10.1002/adma.201602900
    [136] OTSU T, YOSHIDA M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations:Polymer design by organic disulfides as iniferters[J]. Die Makromolekulare Chemie Rapid Communications, 1982, 3(2):127-132. doi: 10.1002/marc.1982.030030208
    [137] OTSU T. Iniferter concept and living radical polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2000, 38(12):2121-2136. doi: 10.1002/(ISSN)1099-0518
    [138] GONG H, ZHAO Y, SHEN X, et al. Organocatalyzed photo-controlled radical polymerization of semi-fluorinated (meth)acrylates driven by visible light[J]. Angewandte Chemie International Edition, 2018, 57:333-337. doi: 10.1002/anie.201711053
    [139] QUAN Q, GONG H, CHEN M. Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent:Facilitating surface fabrication with fluorinated materials[J]. Polymer Chemistry, 2018, 9:4161-4171. doi: 10.1039/C8PY00990B
    [140] CAMBI D, BOTTECCHIA C, STRAATHOF N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17):10276-10341. doi: 10.1021/acs.chemrev.5b00707
    [141] SHEN X, GONG H, ZHOU Y, et al. Unsymmetrical difunctionalization of cyclooctadiene under continuous flow conditions:Expanding the scope of ring opening metathesis polymerization[J]. Chemical Science, 2018, 9:1846-1853. doi: 10.1039/C7SC04580H
    [142] GU Y, KAWAMOTO K, ZHONG M, et al. Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control[J]. Proceedings of the National Academy of Sciences, 2017, 114(19):4875-4880. doi: 10.1073/pnas.1620985114
    [143] CHEN M, BUCHWALD S L. Rapid and efficient trifluoromethylation of aromatic and heteroaromatic compounds using potassium trifluoroacetate enabled by a flow system[J]. Angewandte Chemie International Edition, 2013, 52(44):11628-11631. doi: 10.1002/anie.201306094
    [144] CHEN M, BUCHWALD S L. Continuous-flow synthesis of 1-substituted benzotriazoles from chloronitrobenzenes and amines in a C-N Bond formation/hydrogenation/diazotization/cyclization Sequence[J]. Angewandte Chemie International Edition, 2013, 52(15):4247-4250. doi: 10.1002/anie.201300615
    [145] DONG H, TANG W, MATYJASZEWSKI K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP[J]. Macromolecules, 2007, 40(9):2974-2977. doi: 10.1021/ma070424e
    [146] DEBUIGNE A, WARNANT J, J R ME R, et al. Synthesis of novel well-defined poly(vinyl acetate)-b-poly(acrylonitrile) and derivatized water-soluble poly(vinyl alcohol)-b-poly(acrylic acid) block copolymers by cobalt-mediated radical polymerization[J]. Macromolecules, 2008, 41(7):2353-2360. doi: 10.1021/ma702341v
    [147] CHEN Q, ZHANG Z, ZHOU N, et al. Copper(0)-mediated living radical polymerization of acrylonitrile at room temperature[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2011, 49(5):1183-1189. doi: 10.1002/pola.v49.5
    [148] ZHONG M, KIM E K, MCGANN J P, et al. Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer[J]. Journal of the American Chemical Society, 2012, 134(36):14846-14857. doi: 10.1021/ja304352n
    [149] PAN X, LAMSON M, YAN J, et al. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile[J]. ACS Macro Letters, 2015, 4(2):192-196. doi: 10.1021/mz500834g
    [150] NIU T, JIANG J, LI S, et al. Well-defined high-molecular-weight polyacrylonitrile formation via visible-light-induced metal-free radical polymerization[J]. Macromolecular Chemistry and Physics, 2017, 218(15):1700169. doi: 10.1002/macp.v218.15
    [151] LI J, DING C, ZHANG Z, et al. Photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile at ambient temperature:A simple system to obtain high-molecular-weight polyacrylonitrile[J]. Reactive and Functional Polymers, 2017, 113:1-5. doi: 10.1016/j.reactfunctpolym.2017.02.003
    [152] LEE I-H, DISCEKICI E H, ANASTASAKI A, et al. Controlled radical polymerization of vinyl ketones using visible light[J]. Polymer Chemistry, 2017, 8(21):3351-3356. doi: 10.1039/C7PY00617A
    [153] PERKOWSKI A J, YOU W, NICEWICZ D A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene[J]. Journal of the American Chemical Society, 2015, 137(24):7580-7583. doi: 10.1021/jacs.5b03733
    [154] MESSINA M S, AXTELL J C, WANG Y, et al. Visible-light-induced olefin activation using 3D aromatic boron-rich cluster photooxidants[J]. Journal of the American Chemical Society, 2016, 138(22):6952-6955. doi: 10.1021/jacs.6b03568
    [155] ALLUSHI A, JOCKUSCH S, YILMAZ G, et al. Photoinitiated metal-free controlled/living radical polymerization using polynuclear aromatic hydrocarbons[J]. Macromolecules, 2016, 49(20):7785-7792. doi: 10.1021/acs.macromol.6b01752
    [156] AOSHIMA S, KANAOKA S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11):5245-5287. doi: 10.1021/cr900225g
    [157] UCHIYAMA M, SATOH K, KAMIGAITO M. Cationic RAFT polymerization using ppm concentrations of organic acid[J]. Angewandte Chemie International Edition, 2015, 54(6):1924-1928. doi: 10.1002/anie.201410858
    [158] UCHIYAMA M, SATOH K, KAMIGAITO M. Thioether-mediated degenerative chain-transfer cationic polymerization:A simple metal-free system for living cationic polymerization[J]. Macromolecules, 2015, 48(16):5533-5542. doi: 10.1021/acs.macromol.5b01341
    [159] MICHAUDEL Q, KOTTISCH V, FORS B P. Cationic polymerization:From photoinitiation to photocontrol[J]. Angewandte Chemie International Edition, 2017, 56(33):9670-9679. doi: 10.1002/anie.201701425
    [160] KOTTISCH V, MICHAUDEL Q, FORS B P. Photocontrolled interconversion of cationic and radical polymerizations[J]. Journal of the American Chemical Society, 2017, 139(31): 10665-10668. doi: 10.1021/jacs.7b06661
    [161] MICHAUDEL Q, CHAUVIRE T, KOTTISCH V, et al. Mechanistic insight into the photocontrolled cationic polymerization of vinyl ethers[J]. Journal of the American Chemical Society, 2017, 139(43): 15530-15538. doi: 10.1021/jacs.7b09539
    [162] CIFTCI M, YOSHIKAWA Y, YAGCI Y. Living cationic polymerization of vinyl ethers through a photoinduced radical oxidation/addition/deactivation sequence[J]. Angewandte Chemie International Edition, 2017, 56(2): 519-523. doi: 10.1002/anie.201609357
    [163] BIELAWSKI C W, GRUBBS R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2007, 32(1): 1-29. doi: 10.1016/j.progpolymsci.2006.08.006
    [164] MARTINEZ H, REN N, MATTA M E, et al. Ring-opening metathesis polymerization of 8-membered cyclic olefins[J]. Polymer Chemistry, 2014, 5(11): 3507-3532. doi: 10.1039/c3py01787g
    [165] SCHROCK R R, HOVEYDA A H. Molybdenum and tungsten imido alkylidene complexes as efficient olefin-metathesis catalysts[J]. Angewandte Chemie International Edition, 2003, 42(38): 4592-4633. doi: 10.1002/(ISSN)1521-3773
    [166] OGAWA K A, GOETZ A E, BOYDSTON A J. Metal-free ring-opening metathesis polymerization[J]. Journal of the American Chemical Society, 2015, 137(4): 1400-1403. doi: 10.1021/ja512073m
    [167] GOETZ A E, BOYDSTON A J. Metal-free preparation of linear and cross-linked polydicyclopentadiene[J]. Journal of the American Chemical Society, 2015, 137(24): 7572-7575. doi: 10.1021/jacs.5b03665
    [168] GOETZ A E, PASCUAL L M M, DUNFORD D G, et al. Expanded functionality of polymers prepared using metal-free ring-opening metathesis polymerization[J]. ACS Macro Letters, 2016, 5(5): 579-582. doi: 10.1021/acsmacrolett.6b00131
    [169] PASCUAL L M M, DUNFORD D G, GOETZ A E, et al. Comparison of pyrylium and thiopyrylium photooxidants in metal-free ring-opening metathesis polymerization[J]. Synlett, 2016, 27(5): 759-762. doi: 10.1055/s-00000083
    [170] PASCUAL L M M, GOETZ A E, ROEHRICH A M, et al. Investigation of tacticity and living characteristics of photoredox-mediated metal-free ring-opening metathesis polymerization[J]. Macromolecular Rapid Communications, 2017, 38(13): 1600766. doi: 10.1002/marc.201600766
    [171] LU P, ALRASHDI N M, BOYDSTON A J. Bidirectional metal-free ROMP from difunctional organic initiators[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(18): 2977-2982. doi: 10.1002/pola.28704
    [172] FENG Q, TONG R. Controlled photoredox ring-opening polymerization of O-carboxyanhydrides[J]. Journal of the American Chemical Society, 2017, 139(17): 6177-6182. doi: 10.1021/jacs.7b01462
    [173] AL MOUSAWI A, KERMAGORET A, VERSACE D L, et al. Copper photoredox catalysts for polymerization upon near UV or visible light: Structure/reactivity/efficiency relationships and use in LED projector 3D printing resins[J]. Polymer Chemistry, 2017, 8(3): 568-580. doi: 10.1039/C6PY01958G
    [174] MOKBEL H, ANDERSON D, PLENDERLEITH R, et al. Copper photoredox catalyst "G1": A new high performance photoinitiator for near-UV and visible LEDs[J]. Polymer Chemistry, 2017, 8(36): 5580-5592. doi: 10.1039/C7PY01016H
    [175] AY E, RAAD Z, DAUTEL O, et al. Oligomeric photocatalysts in photoredox catalysis: Toward high performance and low migration polymerization photoinitiating systems[J]. Macromolecules, 2016, 49(6): 2124-2134. doi: 10.1021/acs.macromol.5b02760
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  6293
  • HTML全文浏览量:  1088
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-07
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回