高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛金属表面骨诱导型可降解壳聚糖涂层的构建及生物活性调控

李海霞 何宏燕 董秀琳 常铃雪 刘昌胜

李海霞, 何宏燕, 董秀琳, 常铃雪, 刘昌胜. 钛金属表面骨诱导型可降解壳聚糖涂层的构建及生物活性调控[J]. 功能高分子学报, 2020, 33(1): 39-45. doi: 10.14133/j.cnki.1008-9357.20181219001
引用本文: 李海霞, 何宏燕, 董秀琳, 常铃雪, 刘昌胜. 钛金属表面骨诱导型可降解壳聚糖涂层的构建及生物活性调控[J]. 功能高分子学报, 2020, 33(1): 39-45. doi: 10.14133/j.cnki.1008-9357.20181219001
LI Haixia, HE Hongyan, DONG Xiulin, CHANG Lingxue, LIU Changsheng. Construction of Osteoinductive and Biodegradable Chitosan-Coating on Titanium Surface and Regulation of Biological Activities[J]. Journal of Functional Polymers, 2020, 33(1): 39-45. doi: 10.14133/j.cnki.1008-9357.20181219001
Citation: LI Haixia, HE Hongyan, DONG Xiulin, CHANG Lingxue, LIU Changsheng. Construction of Osteoinductive and Biodegradable Chitosan-Coating on Titanium Surface and Regulation of Biological Activities[J]. Journal of Functional Polymers, 2020, 33(1): 39-45. doi: 10.14133/j.cnki.1008-9357.20181219001

钛金属表面骨诱导型可降解壳聚糖涂层的构建及生物活性调控

doi: 10.14133/j.cnki.1008-9357.20181219001
基金项目: 国家自然科学基金面上项目(31570971);上海市国际科技合作项目(18520710100);中国科学院-威高研究发展计划(攻关项目[2017]005号)
详细信息
    作者简介:

    李海霞(1990—),女,山东人,硕士生,主要从事生物医用材料研究。E-mail:haixialihx@163.com

    通讯作者:

    何宏燕,E-mail:hyhe@ecust.edu.cn

  • 中图分类号: O636.1

Construction of Osteoinductive and Biodegradable Chitosan-Coating on Titanium Surface and Regulation of Biological Activities

  • 摘要: 纯钛片(Ti)首先通过喷砂酸蚀(SLA)形成SLA-Ti,然后经阿仑膦酸钠(ALN)亲水处理后形成ALN-SLA-Ti,最后以壳聚糖(CS)为涂层材料,通过静电喷涂(ES)将重组人骨形态发生蛋白-2(rhBMP-2)快速、有效地载入钛片表面,构建载有活性因子的CS涂层来提高钛片表面的生物活性,进而促进钛片表面的成骨能力。利用扫描电子显微镜、激光共聚焦显微镜等对钛片表面形貌、细胞增殖及成骨分化能力进行表征。结果表明:构建的CS涂层具有多级孔洞结构,亲水且可降解;固载的蛋白质持续可控释放;载有rhBMP-2 CS涂层有利于细胞的黏附和增殖,明显促进细胞成骨分化。

     

  • 图  1  钛片表面可降解生物涂层的构建示意图

    Figure  1.  Schematic diagram of constructing degradable bio-coating on titanium surface

    图  2  SLA-Ti(上)与ALN-SLA-Ti(下)喷涂不同时间的表面形貌

    Figure  2.  Surface morphology of SLA-Ti (up) and ALN-SLA-Ti (down) after spraying differen time

    图  3  固载方式(a)和喷涂时间(b)对钛片表面蛋白质释放行为的影响

    Figure  3.  Effects of loading methods (a) and spraying time (b) on the released behavior of titanium surface

    图  4  CS涂层在PBS缓冲液中的降解行为

    Figure  4.  Degradation behavior of CS coatings in PBS buffer

    图  5  C2C12细胞在钛片表面共培养12 h后的黏附形态

    Figure  5.  Adhesion morphology of C2C12 cells after co-culture on the surface of titanium for 12 h

    图  6  C2C12细胞在钛片表面共培养1、3 d后的增殖行为(a);rBMSCs细胞在钛片表面共培养1、7、14 d时的ALP活性(b)

    Figure  6.  Proliferation of C2C12 cells after co-culture on the surface of titanium for 1 d and 3 d (a); ALP activity of rBMSCs cells on the surfaces of titanium for 7 d and 14 d (b)

    表  1  不同钛片表面的接触角

    Table  1.   Contact angles of different titanium surfaces

    SampleContact angle/(°)
    03 min5 min10 min
    SLA-Ti101±0.83107±2.34100±0.3497±0.78
    ALN-SLA-Ti16±0.4437±1.8959±1.4887±0.77
    下载: 导出CSV
  • [1] DE J L T, LEE S C, JEROEN V D, et al. The osteogenic effect of electrosprayed nanoscale collagen/calcium phosphate coatings on titanium [J]. Biomaterials,2010,31(9):2461-2469. doi: 10.1016/j.biomaterials.2009.11.114
    [2] QIN J, HE H, ZHANG W, et al. Effective Incorporation of rhBMP-2 on implantable titanium disks with microstructure by using electro-hydrodynamic spraying [J]. Rsc Advances,2016,6(57):51914-51923. doi: 10.1039/C6RA09421J
    [3] ALGHAMDI H S, BOSCO R, BEUCKEN V D, et al. Osteogenicity of titanium implants coated with calcium phosphate or collagen type-I in osteoporotic rats [J]. Biomaterials,2013,34(15):3747-3757. doi: 10.1016/j.biomaterials.2013.02.033
    [4] LEE D W, YUN Y P, PARK K, et al. Gentamicin and bone morphogenic protein-2(BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration [J]. Bone,2012,50(4):974-982. doi: 10.1016/j.bone.2012.01.007
    [5] ZHENG D, NEOH K G, SHI Z, et al. Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium [J]. Journal of Colloid & Interface Science,2013,406(18):238-246.
    [6] SAITO N, MURAKAMI N, TAKAHASHI J, et al. Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins [J]. Advanced Drug Delivery Reviews,2005,57(7):1037-1048. doi: 10.1016/j.addr.2004.12.016
    [7] SHI P, CHEN K, GOH J C H. Efficacy of BMP-2 delivery from natural protein based polymeric particles [J]. Advanced Healthcare Materials,2013,2(7):934-939. doi: 10.1002/adhm.201200281
    [8] STENFELT S, GRY H B, GEDDA L, et al. Pre-incubation of chemically crosslinked hyaluronan-based hydrogels, loaded with BMP-2 and hydroxyapatite, and its effect on ectopic bone formation [J]. Journal of Materials Science Materials in Medicine,2014,25(4):1013-1023. doi: 10.1007/s10856-014-5147-y
    [9] CROUZIER T, FOUREL L, BOUDOU T, et al. Presentation of BMP-2 from a soft biopolymeric film unveils its activity on cell adhesion and migration [J]. Advanced Materials,2011,23(12):110-118. doi: 10.1002/adma.201190038
    [10] HETTIARATCHI M H, MILLER T, TEMENOFF J S, et al. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2 [J]. Biomaterials,2014,35(25):7228-7238. doi: 10.1016/j.biomaterials.2014.05.011
    [11] SUNG E K, YOUNG P Y, KYU S S, et al. Fabrication of a BMP-2-immobilized porous microsphere modified by heparin for bone tissue engineering [J]. Colloid Surface B,2015,134:453-460. doi: 10.1016/j.colsurfb.2015.05.003
    [12] LEE J Y, CHOO J E, CHOI Y S, et al. Osteoblastic differentiation of human bone marrow stromal cells in self-assembled BMP-2 receptor-binding peptide-amphiphiles [J]. Biomaterials,2009,30(21):3532-3541. doi: 10.1016/j.biomaterials.2009.03.018
    [13] IAFISCO M, BOSCO R, SANDER C G. Electrostatic spray deposition of biomimetic nanocrystalline apatite coatings onto titanium [J]. Advanced Engineering Materials,2012,14(2):B13-B20.
    [14] 华峰, 田秀枝, 闫德东, 等. 二醛纤维素交联壳聚糖膜的制备及其染料吸附性能 [J]. 功能高分子学报,2018,31(1):82-87.
    [15] ALMAGUER-FLORES A, OLIVARES-NAVARRETE R, WIELAND M. Influence of topography and hydrophilicity on initial oral biofilm formation on microstructured titanium surfaces in vitro [J]. Biomaterial,2012,23(3):301-307.
    [16] SCHWAIZ F, HERTEN M, SAGER M, et al. Bone regeneration in dehiscence-type defects at chemically modified (SLActive®) and conventional SLA titanium implants: A pilot study in dogs [J]. Journal of Clinical Periodontology,2010,34(1):78-86.
    [17] YANG L J, SHEN F X, ZHENG J C, et al. Clinical application of alendronate for osteoporosis/osteopenia secondary to hyperthyroidism [J]. China Journal of Orthopaedics and Traumatology,2012,25(2):133-137.
    [18] ISHIHARA K, KITAGAWA T, INOUE Y. Initial cell adhesion on well-defined surface by polymer brush layers with varying chemical structures [J]. ACS Biomaterials Science & Engineering,2015,1(2):103-109.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4933
  • HTML全文浏览量:  991
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-19
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回