高级检索

    高杰, 苗蕾, 张斌, 陈彧. 柔性复合热电材料及器件的研究进展[J]. 功能高分子学报, 2017, 30(2): 142-167. doi: 10.14133/j.cnki.1008-9357.2017.02.002
    引用本文: 高杰, 苗蕾, 张斌, 陈彧. 柔性复合热电材料及器件的研究进展[J]. 功能高分子学报, 2017, 30(2): 142-167. doi: 10.14133/j.cnki.1008-9357.2017.02.002
    GAO Jie, MIAO Lei, ZHANG Bin, CHEN Yu. Advances in Flexible Thermoelectric Materials and Devices[J]. Journal of Functional Polymers, 2017, 30(2): 142-167. doi: 10.14133/j.cnki.1008-9357.2017.02.002
    Citation: GAO Jie, MIAO Lei, ZHANG Bin, CHEN Yu. Advances in Flexible Thermoelectric Materials and Devices[J]. Journal of Functional Polymers, 2017, 30(2): 142-167. doi: 10.14133/j.cnki.1008-9357.2017.02.002

    柔性复合热电材料及器件的研究进展

    Advances in Flexible Thermoelectric Materials and Devices

    • 摘要: 热电材料能够将热能与电能直接相互转化,在废热回收及绿色制冷领域中具有巨大的应用潜力。相比无机块体热电材料,柔性热电材料具有可弯折、体积小、质量轻等优点,还适用于制备可穿戴电子设备。近10年来,基于导电高分子、碳材料和无机纳米材料等的柔性复合热电材料及器件逐渐成为炙手可热的研究领域,受到了业内广泛的关注。本文综述了近年来基于不同材料体系的柔性热电材料及器件的研究进展、存在的亟待解决的问题和未来的发展方向。大量研究结果表明,材料的热电性能可以通过化学合成和分子设计战略、形貌控制及掺杂技术等进行有效的调控。研发满足实际应用需要的先进柔性热电材料仍然极具挑战性。

       

      Abstract: With the unique ability to directly convert thermal energy to electricity or vice versa, the thermoelectric materials have exhibited great potential applications in waste heat recovery and environmentally friendly refrigeration. In contrast to the inorganic bulk thermoelectric materials, the flexible thermoelectric materials have the advantages of being bendable, small-size, light-weight and others, which makes them applicable in fabricating portable/wearable electronic device. In the recent decade, as one of the most challenging and promising functional materials, the conductive polymers, carbon materials and inorganic nanomaterials-based flexible thermoelectric materials and devices have attracted the attention of a great number of research groups around the world. This review describes systematically the recent achievements on flexible thermoelectric materials and devices based on different materials, and the problems that need to be solved urgently in the near future. The future major ongoing areas of effort have also been suggested. A large number of literatures have demonstrated that the thermoelectric performance of materials can be well-controlled through chemical synthesis and molecular design strategies, as well as morphology controlling and doping techniques. So far, research and development of the state-of-the-art flexible thermoelectric materials for practical applications still presents a considerable challenge.

       

    /

    返回文章
    返回