高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香豆素改性透明质酸颗粒乳化剂的制备及应用

诸超 朱叶 魏玮 顾瑶 刘晓亚

引用本文:
Citation:

香豆素改性透明质酸颗粒乳化剂的制备及应用

    通讯作者: 刘晓亚, lxy@jiangnan.edu.cn
  • 基金项目:

    国家自然科学基金(20974041,21174056);江南大学食品胶体与生物技术教育部重点实验室开发基金(JDSJ2014-07)

  • 中图分类号: O636.9

Preparation and Application of Particulate Emulsifier of Coumarin Modified Hyaluronic Acid

    Corresponding author: LIU Xiao-ya, lxy@jiangnan.edu.cn
  • CLC number: O636.9

  • 摘要: 利用7-(2-羟基乙氧基)-4-甲基香豆素(HEMC)疏水改性透明质酸(HA)制得光敏双亲大分子(HA-HEMC),并通过自组装形成了HA-HEMC胶体粒子。通过核磁共振氢谱和紫外分光光度计确定了HA-HEMC的结构及取代度;采用动态激光光散射、纳米粒度仪和透射电镜等手段对胶体粒子的性质及形貌进行了表征。进一步以HA-HEMC胶体粒子作为颗粒乳化剂稳定油水界面,研究了胶体粒子质量浓度、油相类型、水相pH和盐浓度对胶体粒子乳化性能的影响。结果表明:HA-HEMC可以在选择性溶剂中自组装形成粒径约为236 nm的球形胶体粒子;该胶体粒子能够在较宽的pH范围内(3~11)稳定水包油型乳液且所得乳液有良好的耐盐性;此外,HA-HEMC胶体粒子还能稳定多种油-水体系。
  • [1] PICKERING S U.Cxcvi.-Emulsions[J].Journal of the Chemical Society,Transacyions,1907,91:2001-2021.
    [2] MORSEA J,DUPIN D,THOMPSON K L,et al.Novel Pickering emulsifiers based on pH-responsive poly(tert-butylaminoethyl methacrylate) latexes[J].Langmuir,2012,28(32):11733-11744.
    [3] YAN Mao,LIU Fu,TANG Chuanhe.Properties and microstructure of transglutaminase-set soy protein-stabilized emulsion gels[J].Food Research International,2013,52(1):409-418.
    [4] LIU Fu,TANG Chuanhe.Phytosterol colloidal particles as Pickering stabilizers for emulsions[J].Journal of Agricultural and Food Chemistry,2014,62(22):5133-5141.
    [5] SHAHIDAN N N,LIU Ruixue,THAIBOONROD S,et al.Hollow colloidosomes prepared using accelerated solvent evaporation[J].Langmuir,2013,29(45):13676-13685.
    [6] OH B H L,BISMARCK A,PARK M B C.High internal phase emulsion templating with self-emulsifying and thermoresponsive chitosan-graft-PNIPAM-graft-oligoproline[J].Biomacromolecules,2014,15(5):1777-1787.
    [7] MURAKAMI R,MORIYAMA H,NOGUCHI T,et al.Effects of the density difference between water and oil on stabilization of powdered oil-in-water emulsions[J].Langmuir,2014,30(2):496-500.
    [8] ZHANG Qing,BAI Ruixue,GUO Ting,et al.Switchable Pickering emulsions stabilized by awakened TiO2 nanoparticle emulsifiers using UV/dark actuation[J].ACS Applied Materials and Interfaces,2015,7(33):18240-18246.
    [9] MA Chunfeng,BI Xiaobo,NGAI To,et al.Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions[J].Journal of Materials Chemistry A,2013,1:5353-5360.
    [10] MORSE A J,ARMES S P,THOMPSON K L,et al.Novel Pickering emulsifiers based on pH-responsive poly(2-(diethylamino) ethyl methacrylate) latexes[J].Langmuir,2013,29(18):11733-11744.
    [11] SUN Jianhua,YI Chenglin,WEI Wei,et al.Nanohybrids from direct chemical self-assembly of poly(styrene-alt-maleic anhydride) as pH-responsive particulate emulsifiers[J].Langmuir,2014,30(49):1-28.
    [12] FUJⅡ Syuji,CAI Yuanli,WEAVER J V M,et al.Syntheses of shell cross-linked micelles using acidic ABC triblock copolymers and their application as pH-responsive particulate emulsifiers[J].Journal of the American Chemical Society,2005,127(20):7304-7305.
    [13] YI Chenglin,LIU Na,ZHENG Junchao,et al.Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers[J].Journal of Colloid and Interface Science,2012,380:90-98.
    [14] LIU Xiaoya,YI Chenglin,ZHU Ye,et al.Pickering emulsions stabilized by self-assembled colloidal particles of copolymers of P(St-alt-MAn)-co-P(VM-alt-MAn)[J].Journal of Colloid and Interface Science,2010,351(2):315-322.
    [15] YI Chenglin,YANG Yiqun,ZHU Ye,et al.Self-assembly and emulsification of poly {[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}[J].Langmuir,2012,28(25):9211-9222.
    [16] WEI Wei,WANG Ting,YI Chenglin,et al.Self-assembled micelles based on branched poly(styrene-alt-maleic anhydride) as particulate emulsifiers[J].RSC Advances,2015,5(2):1564-1570.
    [17] LIU Hao,WANG Chaoyang,ZOU Shengwen,et al.Simple,reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification[J].Langmuir,2012,28(30):11017-11024.
    [18] ZOPPEJ O,VENDITTI R A,ROJAS O J.Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes[J].Journal of Colloid and Interface Science,2012,369(1):202-209.
    [19] TAN Ying,XU Kun,NIU Cheng,et al.Triglyceride-water emulsions stabilised by starch-based nanoparticles[J].Food Hydrocolloids,2014,36:70-75.
    [20] MARTINS Madalena,AZOIA N G,SHIMANOVICH U,et al.Design of novel BSA/hyaluronic acid nanodispersions for transdermal pharma purposes[J].Molecular Pharmaceutics,2014,11(5):1479-1488.
    [21] UNALG C,CUTTICA D,ANNABI N,et al.Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels[J].Biomacromolecules,2013,14(4):1085-1092.
    [22] 董鹏程,董少雄,陈少婷,等.透明质酸(HA)在化妆品方面的作用功效以及应用[J].科技资讯,2013(30):75-76.
    [23] RODELL C B,WADE R J,PURCELL B P,et al.Selective proteolytic degradation of guest-host assembled,injectable hyaluronic acid hydrogels[J].ACS Biomaterials Science and Engineering,2015,1(4):277-286.
    [24] LEE H,LEE K,PARK T G.Hyaluronic acid-paclitaxel conjugate micelles:Synthesis,characterization,and antitumor activity[J].Bioconjugate Chemistry,2008,19(6):1319-1325.
    [25] YU Meihua,JAMBHRUNKAR S,THORN P,et al.Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells[J].Nanoscale,2013,5(1):178-183.
    [26] JIANG Jinqiang,QI B,LEPAGE M,et al.Polymer Micelles stabilization on demand through reversible photo-cross-linking[J].Macromolecules,2007,40(4):790-792.
    [27] MADDIPATLA M V S N,WEHRUNG D,TANG Chuan,et al.Photoresponsive coumarin polyesters that exhibit cross-linking and chain scission properties[J].Macromolecules,2013,46(13):5133-5140.
    [28] BINKS B P,MURAKAMI R,ARMES S P,et al.Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles[J].Langmuir,2006,22(5):2050-2057.
    [29] BINKSB P.Particles as surfactants-similarities and differences[J].Current Opinion in Colloid and Interface Science,2002,7(1-2):21-41.
    [30] 林海芳,易成林,徐晶,等.壳聚糖的光敏改性及其胶束化行为[J].日用化学工业,2012,42(3):167-191.
    [31] GILLES S,FREDERIQUE H P,GILLES P.Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate[J].Biomacromolecule,2013,14(8):2937-2944.
    [32] ZHANG Cuige,ZHU Ye,ZHANG Rongli,et al.Pickering emulsions stabilized by composite nanoparticles prepared from lysozyme and dopamine modified poly(γ-glutamic acid):Effects of pH value on the stability of the emulsion and the activity of lysozyme[J].RSC Advances,2015,5:90651-90658.
    [33] AVEYARD R,BINKS B P,CLINT J H.Emulsions stabilised solely by colloidal particles[J].Advances in Colloid and Interface Science,2003,100-102:503-546.
  • [1] 冉海燕洪慧诸超邱野吴瑞雪朱叶罗静刘晓亚 . 肉桂酸改性透明质酸颗粒乳化剂的制备及性能. 功能高分子学报, 2019, 32(1): 53-62. doi: 10.14133/j.cnki.1008-9357.20180419001
    [2] 胡琼朱叶魏玮易成林顾瑶刘晓亚 . 核交联型双亲聚合物胶体粒子的制备及其乳化性能. 功能高分子学报, 2016, 29(1): 51-60. doi: 10.14133/j.cnki.1008-9357.2016.01.006
    [3] 张一帆张翠歌朱叶刘晓亚 . 基于葡聚糖自组装胶体粒子的分子印迹传感器的制备及电化学性能. 功能高分子学报, 2018, 31(1): 37-45. doi: 10.14133/j.cnki.1008-9357.20170721001
    [4] 魏玮卢荣杰胡琼朱叶罗静刘晓亚 . 磺化聚磷腈微球的制备及其乳化性能. 功能高分子学报, 2015, 28(3): 225-233.
    [5] 易昌凤沈艳华徐祖顺 . 树形大分子的自组装. 功能高分子学报, 2003, 16(4): 599-606.
    [6] 易成林孙建华魏玮刘晓亚 . 双亲性无规光敏共聚物的疏水基元对其 自组装胶束乳化性能的影响. 功能高分子学报, 2014, 27(1): -.
    [7] 沈浩王玉海麦堪成 . 大分子相容剂改性Mg(OH)2/PP阻燃材料的性能. 功能高分子学报, 2007, 20(3): 298-303.
    [8] 李雄伟严昌虹 . 功能高分子微球研究:元乳化剂乳液聚合法合成.... 功能高分子学报, 1989, 2(4): 267-274.
    [9] 黄婧孙军罗静刘晓亚 . 基于大分子共组装法制备聚苯胺纳米粒子. 功能高分子学报, 2016, 29(1): 43-50. doi: 10.14133/j.cnki.1008-9357.2016.01.005
    [10] 何琳徐立恒 . 大分子自组装成膜技术及膜结构的影响要素. 功能高分子学报, 1999, 12(2): 203-206.
    [11] 黄亮袁慧雅叶国东曾兆华杨建文陈用烈 . 大分子光引发剂的研究进展. 功能高分子学报, 2004, 17(2): 325-329.
    [12] 李雄伟严昌虹周成德孙宗华 . 功能高分子微球研究无乳化剂乳液聚合法合成苯乙烯-苯乙烯磺酸钠胶乳微球. 功能高分子学报, 1989, 2(4): -.
    [13] 曹明刘祥瑞 . 电荷翻转的聚酯树枝状大分子的合成、自组装及用于肿瘤细胞核的药物输送. 功能高分子学报, 2013, 26(4): -.
    [14] 王婷立易成林江金强刘晓亚 . 两种双亲性聚合物自组装胶束复合水溶液的乳化性能. 功能高分子学报, 2011, 24(1): -.
    [15] 谢亚珍刘敬成胡琼刘仁刘晓亚张胜文 . 双亲性共聚物P(St/VBT-co-MA)自组装胶束的制备及其乳化性能. 功能高分子学报, 2016, 29(2): 200-206. doi: 10.14133/j.cnki.1008-9357.2016.02.009
    [16] 熊晗於麟金玉存卢毅蒋宏亮王利群 . 壳聚糖基大分子引发剂引发寡聚乙二醇甲基丙烯酸酯单电子转移-活性自由基聚合动力学. 功能高分子学报, 2012, 25(4): -.
    [17] 朱洁莲朱叶王益华施冬健刘晓亚 . 光敏性无规共聚物P(FA2C-co-AA)的自组装及乳化性能. 功能高分子学报, 2010, 23(4): 367-373.
    [18] 鲁念慈谭天伟 . 透明质酸的制备及其应用. 功能高分子学报, 2001, 14(3): 370-376.
    [19] 赵雄燕陈长青 . 大分子引发剂用于合成嵌段液晶共聚物的新进展. 功能高分子学报, 1997, 10(4): 587-595.
    [20] 徐晶白绘宇林海芳李慧珺夏文水刘晓亚 . 光致还原制备透明质酸-纳米银复合物. 功能高分子学报, 2011, 24(3): 238-242.
  • 加载中
计量
  • 文章访问数:  8984
  • HTML全文浏览量:  68
  • PDF下载量:  1318
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-23
  • 刊出日期:  2017-01-05

香豆素改性透明质酸颗粒乳化剂的制备及应用

    通讯作者: 刘晓亚, lxy@jiangnan.edu.cn
  • 1. 江南大学化学与材料工程学院, 食品胶体与生物技术教育部重点实验室, 江苏 无锡 214122
基金项目:  国家自然科学基金(20974041,21174056);江南大学食品胶体与生物技术教育部重点实验室开发基金(JDSJ2014-07)

摘要: 利用7-(2-羟基乙氧基)-4-甲基香豆素(HEMC)疏水改性透明质酸(HA)制得光敏双亲大分子(HA-HEMC),并通过自组装形成了HA-HEMC胶体粒子。通过核磁共振氢谱和紫外分光光度计确定了HA-HEMC的结构及取代度;采用动态激光光散射、纳米粒度仪和透射电镜等手段对胶体粒子的性质及形貌进行了表征。进一步以HA-HEMC胶体粒子作为颗粒乳化剂稳定油水界面,研究了胶体粒子质量浓度、油相类型、水相pH和盐浓度对胶体粒子乳化性能的影响。结果表明:HA-HEMC可以在选择性溶剂中自组装形成粒径约为236 nm的球形胶体粒子;该胶体粒子能够在较宽的pH范围内(3~11)稳定水包油型乳液且所得乳液有良好的耐盐性;此外,HA-HEMC胶体粒子还能稳定多种油-水体系。

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回