高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物刺激源的响应性聚合物及其可控自组装

张建 马明煊 闫强

引用本文:
Citation:

基于生物刺激源的响应性聚合物及其可控自组装

    通讯作者: 闫强, yanq@fudan.edu.cn
  • 基金项目:

    中组部青年千人计划项目(KHH17171002)

  • 中图分类号: O63

Biological Stimuli-Responsive Polymers and Their Controllable Self-Assembly

    Corresponding author: YAN Qiang, yanq@fudan.edu.cn
  • CLC number: O63

  • 摘要: 基于生物刺激源的响应性大分子自组装体系对智能聚合物领域的发展具有重要的意义。本文回顾并综述了近年来在该领域内针对生物大分子及各种小分子作为刺激源的大分子自组装体系及其研究现状。依据不同类型的刺激源进行分类,论述了近年来的研究进展,并合理展望了该领域未来的发展前景。
  • [1] SCHATTLING P,JOCHUM F D,THEATO P,et al.Multi-stimuli responsive polymers:The all-in-one talents[J].Polym Chem,2014,5(1):25-36.
    [2] WILLIAMS R J,SMITH A M,ULIJIN R V,et al.Enzyme-assisted self-assembly under thermodynamic control[J].Nat Nanotechnol,2009,4(1):19-24.
    [3] ZHAIL.Stimuli-responsive polymer films[J].Chem Soc Rev,2013,42(17):7148-7160.
    [4] SHIM M S,KWON Y J.Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications[J].Adv Drug Delivery Rev,2012,64(11):1046-1058.
    [5] arene-based molecular recognition in water:Establishment and application in gas-controlled self-assembly and release[J].J Am Chem Soc,2015,137(33):10472-10475.
    [6] PAEK K,YANG H,KIM B J.Efficient colorimetric pH sensor based on responsive polymer-quantum dot integrated graphene oxide[J].ACS Nano,2014,8(3):2848-2856.
    [7] ROY D,CAMBRE J N,SUMERLIN B S.Future perspective and recent advances in stimuli-responsive materials[J].Prog Polym Sci,2010,35(1):278-301.
    [8] arene/ATP host-guest recognition:Selectivity,inhibition of ATP hydrolysis,and application in multidrug resistance treatment[J].Chem Sci,2016,DOI:10.1039/C6SC00531D.
    [9] STUART M A C,HUCK W T S,GENZER J,et al.Emerging applications of stimuli-responsive polymer materials[J].Nat Mater,2010,9(2):101-113.
    [10] TORCHILIN V P.Multifunctional,stimuli-sensitive nanoparticulate system for drug delivery[J].Nat Rev Drug Discov,2014,13(11):813-827.
    [11] LIU F,URBAN M W.Recent advances and challenges in designing stimuli-responsive polymers[J].Prog Polym Sci,2010,35(1):3-23.
    [12] LIU S Y,BILLINGHAM N C,ARMES S P.A schizophrenic water-soluble diblock copolymer[J].Angew Chem Int Ed,2001,40(12):2328-2331.
    [13] RODRIGUEZ-HERNANDEZ J,LECOMMANDOUX S.Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers[J].J Am Chem Soc,2005,127(7):2026-2027.
    [14] LI G Y,SHI L Q,HUANG N.Formation of complex micelles with double-responsive channels from self-assembly of two diblock copolymer[J].Angew Chem Int Ed,2006,45(30):4959-4962.
    [15] DU J Z,DU X J,WANG J,et al.Tailormade dual pH-sensitive polymerdoxorubicin nanoparticless for efficient anticancer drug delivery[J].J Am Chem Soc,2011,133(44):17560-17563.
    [16] NAPOLO A,VALENTINI M,HUBBEL J A,et al.Oxidation-responsive polymer vesicles[J].Nat Mater,2004,3(3):183-189.
    [17] MA N,XU Y,ZHANG X,et al.Dual redox responsive assemblies formed from diselenide block copolymers[J].J Am Chem Soc,2010,132(2):442-443.
    [18] LI Y,WANG Y G,GAO J M,et al.Chaotropic-anion-induced supramolecular self-assembly of ionic polymeric micelles[J].Angew Chem Int Ed,2014,53(31):8212-8216.
    [19] LI Y T,LOKITZ B S,McCORMICK C L.Thermally responsive vesicles and their structural locking through polyelectrolyte complex formation[J].Angew Chem Int Ed,2006,45(35):5792-5795.
    [20] LUTZ J F,AKDEMIR O,HOTH A.Point by point comparison of two thermoresponsive polymers exhibiting a similar LCST:Is the age of poly(NIPAM) over?[J].J Am Chem Soc,2006,128(40):13046-13047.
    [21] YAN Q,YUAN J Y,YIN Y W,et al.Voltage-responsive vesicles based on orthogonal assembly of two homopolymers[J].J Am Chem Soc,2010,132(27):9268-9270.
    [22] JIANG J Q,TONG X,ZHAO Y.A new design for light-breakable polymer micelles[J].J Am Chem Soc,2005,127(23):8290-8291.
    [23] FOMINA N,MCFEATIN,ALMUTAIRI A,et al.UV and near-IR triggered release from polymeric nanoparticles[J].J Am Chem Soc,2010,132(28):9540-9542.
    [24] YAN B,BOYER J C,ZHAO Y,et al.Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles[J].J Am Chem Soc,2011,133(49):19714-19717.
    [25] TAN X Y,LI B B,ZHANG K,et al.Light-triggered,self-immolative nucleic acid-drug nanostructures[J].J Am Chem Soc,2015,137(19):6112-6115.
    [26] WANG X R,HU J M,LIU S Y,et al.Reversibly switching bilayer permeability and release modules of photochromic polymersomes stabilized by cooperative noncovalent interactions[J].J Am Chem Soc,2015,137(48):15262-15275.
    [27] LIU G N,ZHANG G F,LIU S Y,et al.Hyperbranched self-immolative polymers(hSIPs) for programmed payload delivery and ultrasensitive detection[J].J Am Chem Soc,2015,137(36):16645-16655.
    [28] YAN Q,ZHAO Y.Block copolymer self-assembly controlled by the "green" gas stimulus of carbon dioxide[J].Chem Commun,2014,50(79):11631-11641.
    [29] de BOER B,STALMACH U,HADZIIOANNOU G,et al.Supramolecular self-assembly and opto-electronic properties of semiconducting block copolymers[J].Polymer,2001,42(21):9097-9109.
    [30] WOLKOFF P,SCHNEIDER T,SCHUNK H,et al.Risk in cleaning:Chemical and physical exposure[J].Sci Total Environ,1998,215(1-2):135-136.
    [31] MURA S,NICOLAS J,COUVREUR P.Stimuli-responsive nanocarriers for drug delivery[J].Nat Mater,2013,12(11):991-1003.
    [32] AMIR R J,ZHONG S,HAWKER C J,et al.Enzymatically triggered self-assembly of block copolymers[J].J Am Chem Soc,2009,131(39):13949-13951.
    [33] MEERS P.Enzyme-activated targeting of liposomes[J].Adv Drug Delivery Rev,2001,53(31):265-272.
    [34] MOLLA M R,PRIYAA P,THAYUMANAVAN S.Protein-induced supramolecular disassembly of amphiphilic polypeptide nanoassemblies[J].J Am Chem Soc,2015,137(23):7286-7289.
    [35] GUO J,ZHUANG J M,THAYUMANAVAN S,et al.Protein and enzyme gated supramolecular disassembly[J].J Am Chem Soc,2014,136(6):2220-2223.
    [36] AZAGARSAMY M A,YESILYURT V,THAYUMANAVAN S.Disassembly of dendritic micellar containers due to protein binding[J].J Am Chem Soc,2010,132(13):4550-4551.
    [37] RAO J Y,KHAN A.Enzyme sensitive synthetic polymer micelles based on the azobenzene motif[J].J Am Chem Soc,2013,135(38):14056-14059.
    [38] WANG C,CHEN Q S,ZHANG X,et al.An enzyme-responsive polymeric superamphiphile[J].Angew Chem Int Ed,2010,49(46):8612-8615.
    [39] SEEMAN N C.DNA in a material world[J].Nature,2003,421(6921):427-431.
    [40] ALDAYE F A,PALMER A L,SLEIMAN H F.Assembling Materials with DNA as the guide[J].Science,2008,321(5897):1795-1799.
    [41] MCLAUGHLIN C K,HAMBLIN G D,SLEIMAN H F,et al.Supramolecular DNA assembly[J].Chem Soc Rev,2011,40(12):5647-5656.
    [42] EDWARDSON T G W,CARNEIRO K M M,SLEIMAN H F,et al.Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly[J].Nature Chemistry,2013,5(10):868-875.
    [43] BUJOLD K E,FAKHOUTY J,SLEIMAN H F,et al.Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles[J].Chem Sci,2014,5(6):2449-2455.
    [44] NIU L N,CHEN Y Z,YANG Q Z,et al.Design strategies of fluorescent probes forselective detection among biothiols[J].Chemical Society Reviews,2015,44(17):6143-6160.
    [45] LI L,ROSE P,MOORE,P K.Hydrogen sulfide and cell signaling[J].Annu Rev Pharmacol Toxicol,2011,51(51):169-187.
    [46] LI L,MOORE,P K.Putative biological roles of hydrogen sulfide in health and disease:A breath of not so fresh air?[J].Trends Pharmacol Sci,2008,29(2):84-90.
    [47] YAN Q,SANG W.H2S gasotransmitter-responsive polymer vesicles[J].Chem Sci,2016,7(3):2100-2105.
    [48] RICCIO D A,SCHOENFISCH M H.Nitric oxide release:Part I.Macromolecular scaffolds[J].Chem Soc Rev,2012,41(10):3731-3741.
    [49] CONESKI P N,SCHOENFISCH M H.Nitric oxide release:Part Ⅲ.Measurement and reporting[J].Chem Soc Rev,2012,41(10):3753-3758.
    [50] MOCELLIN S,BRONTE V,NITTI D.Nitric oxide,a double edged sword in cancer biology:Searching for therapeutic opportunities[J].Med Res Rev,2007,27(3):317-352.
    [51] GLADWIN M T,KIM-SHAPIRO D B.Vascular biology:Nitric oxide caught in traffic[J].Nature,2012,491(7424):344-345.
    [52] HU J M,WHITTAKER M R,Davis T P,et al.Biomimetic polymers responsive to a biological signaling molecule:Nitric oxide triggered reversible self-assembly of single macromolecular chains into nanoparticles[J].Angew Chem Int Ed,2014,53(30):2583-2589.
    [53] GUO Z Q,SONG NR,YOON J Y,et al.A benzobisimidazolium-based fluorescent and colorimetric chemosensor for CO2[J].J Am Chem Soc,2012,134(43):17846-17849.
    [54] WANG H,CHEN D D,DONG Y P.A fluorescent probe with an aggregation-enhanced emission feature for real-time monitoring of low carbon dioxide levels[J].J Mater Chem C,2015(3):7621-7626.
    [55] DANSBY-SPARKS R N,JIN J,XUE Z L,et al.Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations[J].Anal Chem,2010,82(2):593-600.
    [56] GUTKNECHT J,BISSON M A,TOSTESON F C.Diffusion of carbon dioxide through lipid bilayer membranes:Effects of carbonic anhydrase,bicarbonate,and unstirred layers[J].J Gen Physiol,1977,69(6):779-784.
    [57] TOUR J M,KITTRELL C,COLVIN V L.Green carbon as a bridge to renewable energy[J].Nat Mater,2010,9(11):871-874.
    [58] YAN Q,ZHOU R,YUAN J Y,et al.CO2-responsive polymeric vesicles that breathe[J].Angew Chem Int Ed,2011,50(21):4923-4927.
    [59] YAN Q,WANG J B,YUAN J Y,et al.Breathing polymersomes:CO2-tuning membrane permeability for size-selective release,separation,and reaction[J].Angew Chem Int Ed,2013,52(19):5070-5073.
    [60] YAN Q,ZHAO Y.Polymeric microtubules that breathe:CO2-driven polymer controlled-self-assembly and shape transformation[J].Angew Chem Int Ed,2013,52(38):9948-9951.
    [61] YAN Q,ZHAO Y.CO2-stimulated diversiform deformations of polymer assemblies[J].J Am Chem Soc,2013,135(44):16300-16303.
    [62] JIE K C,ZHOU Y J,HUANG F H,et al.CO2-responsive pillar
    [63] BISWAS S,KINBABA K,AIDA T,et al.Biomolecular robotics for chemomechanically driven guest delivery fuelled by intracellular ATP[J].Nat Chem,2013,5(7):613-620.
    [64] OKURO K,SASAKI M,AIDA T.Boronic acid-appended molecular glues for ATP-responsive activity modulation of enzymes[J].J Am Chem Soc,2016,DOI:10.1021/jacs.6b02664.
    [65] MO R,JIANG T Y,GU Z,et al.ATP-triggered anticancer drug delivery[J].Nature Communications,2014,5(1):3364.
    [66] YAN Q,ZHAO Y.ATP-triggered biomimetic deformations of bioinspired receptor-containing polymer assemblies[J].Chem Sci,2015,6(7):4343-4349.
    [67] YU G C,ZHOU J,HUANG F H,et al.Cationic pillar
    [68] XU X D,LIN B B,ZHUO R X,et al.Biological glucose metabolism regulated peptide self-assembly as a simple visual biosensor for glucose detection[J].Macromol Rapid Commun,2012,33(5):426-431.
    [69] RYU J H,JIWPANICH S,THAYUMANAVAN S,et al.Surface-functionalizable polymer nanogels with facile hydrophobic guest encapsulation capabilities[J].J Am Chem Soc,2010,132(24):8246-8247.
    [70] RYU J H,CHACKO R T,THAYUMANAVAN S,et al.Self-cross-linked polymer nanogels:A versatile nanoscopic drug delivery platform[J].J Am Chem Soc,2010,132(48):17227-17235.
    [71] JIWPANICH S,RYU J H,THAYUMANAVAN S,et al.Noncovalent encapsulation stabilities in supramolecular nanoassemblies[J].J Am Chem Soc,2010,132(31):10683-10685.
    [72] ZHAO W,ZHANG H,SHI J,et al.A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles[J].Chem Commun,2011,47(33):9459-9461.
    [73] GUO Q Q,ZHANG T Q,LI C X,et al.Block versus random amphiphilic glycopolymer nanopaticles as glucose-responsive vehicles[J].Biomacromolecules,2015,16(10):3345-3356.
    [74] KIM H,KANG Y J,KIN T,et al.Monosaccharide-responsive release of insulin from polymersomes of polyboroxole block copolymers at neutral pH[J].J Am Chem Soc,2012,134(9):4030-4033.
    [75] CHENG R,FENG F,ZHONG Z,et al.Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery[J].J Controlled Release,2011,152(1):2-12.
    [76] KUPPUSAMY P,LI H,MITCHELL J B,et al.Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J].Cancer Res,2002,62(1):307-312.
    [77] CHEN W,ZHONG P,ZHONG Z Y,et al.Redox and pH-responsive degradable micelles for dually activatedintracellular anticancer drug release[J].Journal of Controlled Release,2013,169(3):171-179.
    [78] WANG H,WANG X,MANNERS I,et al.Redox-mediated synthesis and rncapsulation of inorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymer micelles[J].J Am Chem Soc,2008,130(39):12921-12930.
    [79] BROADERS K E,GRANGHE S,FRECHET J M.A Biocompatible oxidation-triggered carrier polymer with potential in therapeutics[J].J Am Chem Soc,2011,133(4):756-758.
    [80] MA N,XU H P,ZHANG X,et al.Dual redox responsive assemblies formed from diselenide block copolymers[J].J Am Chem Soc,2010,132(2):442-443.
    [81] HAN P,LI S C,XU H P,et al.Red light responsive diselenide-containing block copolymer micelles[J].J Mater Chem B,2013,1(6):740-743.
  • [1] 易昌凤沈艳华徐祖顺 . 树形大分子的自组装. 功能高分子学报, 2003, 16(4): 599-606.
    [2] 何琳徐立恒 . 大分子自组装成膜技术及膜结构的影响要素. 功能高分子学报, 1999, 12(2): 203-206.
    [3] 刘朋蔡国强王利群蒋宏亮涂克华 . pH响应壳聚糖衍生物的合成与自组装. 功能高分子学报, 2010, 23(4): 334-339.
    [4] 曹明刘祥瑞 . 电荷翻转的聚酯树枝状大分子的合成、自组装及用于肿瘤细胞核的药物输送. 功能高分子学报, 2013, 26(4): -.
    [5] 黄婧孙军罗静刘晓亚 . 基于大分子共组装法制备聚苯胺纳米粒子. 功能高分子学报, 2016, 29(1): 43-50. doi: 10.14133/j.cnki.1008-9357.2016.01.005
    [6] 宛新华 . 原位可控构筑多层次超分子手性聚合物组装体. 功能高分子学报, 2020, 33(3): 207-209. doi: 10.14133/j.cnki.1008-9357.20200415002
    [7] 王小凡李策陈凌志王伟林绍梁 . 新型偶氮苯嵌段共聚物的自组装及其响应性. 功能高分子学报, 2015, 28(2): -.
    [8] 田晨孙柳英陶鑫峰姚远林绍梁 . 偶氮苯超支化聚合物的自组装及其光响应性. 功能高分子学报, 2020, 33(3): 284-289. doi: 10.14133/j.cnki.1008-9357.20190510001
    [9] 朱洁莲刘仁江金强马崇峰陈明清刘晓亚 . 双亲性无规离聚物溶液的自组装. 功能高分子学报, 2008, 21(3): -.
    [10] 徐敏李庆祥陆学民路庆华 . 嵌段质量分数对手性超分子螺旋结构自组装的影响. 功能高分子学报, 2019, 32(3): 300-306. doi: 10.14133/j.cnki.1008-9357.20181008001
    [11] 袁晓菁王灏戴婷婷李圣利窦红静 . 壳聚糖复合纳米凝胶的“聚合诱导自组装”制备及生物应用研究. 功能高分子学报, 2018, 0(0): -. doi: 10.14133/j.cnki.1008-9357.20171231001
    [12] 袁晓菁王灏戴婷婷李圣利窦红静 . 壳聚糖复合纳米凝胶的聚合诱导自组装制备及生物应用. 功能高分子学报, 2018, 31(4): 340-349. doi: 10.14133/j.cnki.1008-9357.20171231001
    [13] 吕德水林贤福 . LBL自组装技术及自极装生物功能膜结构. 功能高分子学报, 2001, 14(4): 499-503.
    [14] 郑俊超徐晶冯建宾思远白绘宇刘晓亚 . 双亲性无规共聚物P(VM-co-AMPS)的自组装及其性能. 功能高分子学报, 2011, 24(3): 268-273.
    [15] 伊泽源吴俊陆学民路庆华 . 离子自组装超分子荧光材料及其光致各向异性特性. 功能高分子学报, 2013, 26(1): -.
    [16] 王巧纯 . 向日葵状葫芦脲的合成与超分子自组装. 功能高分子学报, 2019, 32(1): 9-12. doi: 10.14133/j.cnki.1008-9357.20180910001
    [17] 黄雪雯赵鑫犇肖恬英季磊梁雪刘晓亚 . 氯丙醇分子印迹自组装胶束的制备及其电化学传感性能. 功能高分子学报, 2016, 29(4): 456-462. doi: 10.14133/j.cnki.1008-9357.2016.04.012
    [18] 刘本昕何昌玉谭连江刘炳亚朱正刚龚兵沈玉梅 . 还原响应型嵌段共聚物自组装纳米胶束作为siRNA运输载体的研究. 功能高分子学报, 2018, 31(3): 216-224. doi: 10.14133/j.cnki.1008-9357.20180102001
    [19] 黄亮袁慧雅叶国东曾兆华杨建文陈用烈 . 大分子光引发剂的研究进展. 功能高分子学报, 2004, 17(2): 325-329.
    [20] 陆晨查刘生 . 智能纳米水凝胶的刺激响应性研究进展. 功能高分子学报, 2012, 25(2): -.
  • 加载中
计量
  • 文章访问数:  7971
  • HTML全文浏览量:  95
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12
  • 刊出日期:  2016-07-08

基于生物刺激源的响应性聚合物及其可控自组装

    通讯作者: 闫强, yanq@fudan.edu.cn
  • 1. 复旦大学高分子科学系, 聚合物分子工程国家重点实验室, 上海 200433
基金项目:  中组部青年千人计划项目(KHH17171002)

摘要: 基于生物刺激源的响应性大分子自组装体系对智能聚合物领域的发展具有重要的意义。本文回顾并综述了近年来在该领域内针对生物大分子及各种小分子作为刺激源的大分子自组装体系及其研究现状。依据不同类型的刺激源进行分类,论述了近年来的研究进展,并合理展望了该领域未来的发展前景。

English Abstract

参考文献 (81)

目录

    /

    返回文章
    返回