高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素纳米晶材料构建策略的进展

李淑芳 石珍旭 甘霖 黄进

李淑芳, 石珍旭, 甘霖, 黄进. 纤维素纳米晶材料构建策略的进展[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.1008-9357.20210331003
引用本文: 李淑芳, 石珍旭, 甘霖, 黄进. 纤维素纳米晶材料构建策略的进展[J]. 功能高分子学报. doi: 10.14133/j.cnki.1008-9357.1008-9357.20210331003
LI Shufang, SHI Zhenxu, GAN Lin, HUANG Jin. Progress and prospects on construction strategies of cellulose nanocrystals-based materials[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.1008-9357.20210331003
Citation: LI Shufang, SHI Zhenxu, GAN Lin, HUANG Jin. Progress and prospects on construction strategies of cellulose nanocrystals-based materials[J]. Journal of Functional Polymers. doi: 10.14133/j.cnki.1008-9357.1008-9357.20210331003

纤维素纳米晶材料构建策略的进展

doi: 10.14133/j.cnki.1008-9357.1008-9357.20210331003
基金项目: 国家自然科学基金项目(51973175);重庆市高校创新研究群体(CXQT19008);重庆英才计划创新创业示范团队(CQYC201903243);中国科协海外智力为国服务行动计划重庆工作基地西南大学海智工作站专项资金。
详细信息
    作者简介:

    李淑芳(1998—),女,贵州纳雍人,硕士生,主要研究方向:聚合物功能材料。E-mail:2870047774@qq.com

    通讯作者:

    黄进,E-mail:huangjin2015@swu.edu.cn;甘霖,E-mail:swugl@swu.edu.cn

  • 中图分类号: O636.1+1

Progress and prospects on construction strategies of cellulose nanocrystals-based materials

  • 摘要: 纤维素纳米晶是契合材料可持续性与来源生物质资源化的纳米颗粒。本文综述了该类生物相容纳米颗粒的棒状形貌与结晶结构,及其关联的维度效应、结构多级次有序性在材料领域应用的独特优势;重点阐述了纤维素纳米晶基多组分/复杂相体系基于物质间作用模式调控的协同高性能化和功能创建方法、颗粒阵列手性调控和去手性组装方法以及发光增强机制叠加的光学防伪应用进展,展望了未来纤维素纳米晶新材料的设计发展思路与构建方法。

     

  • 图  1  纤维素纳米晶在材料领域应用独特优势与必要性的探索与研究(实例图片(a)、 (b)、(c)、(d)、(e)、(f)、(g)、(h)[19][20][14, 22][21][15][17, 18][16])

    Figure  1.  Exploration and research on the unique advantages and necessity of cellulose nanocrystal application in the field of materials (The cited figures (a), (b), (c), (d), (e), (f), (g), (h)[19], [20], [14, 22], [21], [15], [17, 18], [16])

    图  2  基于分子水平相互作用模式及程度调控的CNC改性材料高性能化的研究思路

    Figure  2.  High performance strategy of CNC modified materials based on molecular interaction mode and degree regulation

    图  3  基于分子水平相互作用模式及程度调控的CNC改性材料高性能化构建策略及进展(图中所引实例图片出处为(a)[23] (b)[26] (c)[28] (d)[29] (e)[34] (f)[30] (g)[31] (h)[27]

    Figure  3.  Construction strategies and progress of CNC modified materials based on molecular interaction mode and degree regulation (The cited figures come from (a)[23] (b)[26] (c)[28] (d)[29] (e)[34] (f)[30] (g)[31] (h)[27])

  • [1] SHAGHALEH H, XU X, WANG S. Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives [J]. RSC Advances,2018,8(2):825-842. doi: 10.1039/C7RA11157F
    [2] GRIFFO A, ROOIJAKKERS B, HAEHL H, et al. Binding forces of cellulose binding modules on cellulosic nanomaterials [J]. Biomacromolecules,2019,20(2):769-777. doi: 10.1021/acs.biomac.8b01346
    [3] RAMAKRISHNAN A, RAVISHANKAR K, DHAMODHARAN R. Preparation of nanofibrillated cellulose and nanocrystalline cellulose from surgical cotton and cellulose pulp in hot-glycerol medium [J]. Cellulose,2019,26(5):3127-3141. doi: 10.1007/s10570-019-02312-4
    [4] 王敏, 朱平, 赵晓霞, 等. 细菌纤维素膜的制备与性能 [J]. 功能高分子学报,2008,21(04):405-410.

    WANG M, ZHU P, ZHAO X X, et al. Preparation and property of bacterial cellulose membrane [J]. Journal of Functional Polymers,2008,21(04):405-410.
    [5] HEISE K, KONTTURI E, ALLAHVERDIYEVA Y, et al. Nanocellulose: recent fundamental advances and emerging biological and biomimicking applications [J]. Advanced Materials,2021,33(3):2004349. doi: 10.1002/adma.202004349
    [6] YANG X, BISWAS S K, HAN J, et al. Surface and interface engineering for nanocellulosic advanced materials [J]. Advanced Materials,2020,33(28):2002264.
    [7] HEISE K, DELEPIERRE G, KING A, et al. Chemical modification of reducing end-groups in cellulose nanocrystals [J]. Angewandte Chemie-International Edition,2021,60(1):66-87. doi: 10.1002/anie.202002433
    [8] 余志成, 陈文兴, 凌荣根. 消臭抗菌纤维素纤维的制备、结构和性能 [J]. 功能高分子学报,2002,04)(04):461-465. doi: 10.3969/j.issn.1008-9357.2002.04.017

    YU Z C, CHEN W X, LIN R G. Study on the preparation, structure and the properties of the deodorizing and antibacterial cellulose fiber [J]. Journal of Functional Polymers,2002,04)(04):461-465. doi: 10.3969/j.issn.1008-9357.2002.04.017
    [9] 钱迅南, 朱笑吉, 朱卫明, 等. CNC/角蛋白复合膜的制备及其染料吸附性能 [J]. 功能高分子学报,2020,33(02):200-206.

    QIAN X N, ZHU X J, ZHU W M, et al. Fabrication of cellulose nanocrystals/keratin composite film and its dye adsorption performance [J]. Journal of Functional Polymers,2020,33(02):200-206.
    [10] 周姝妤, 许淑琴, 梁李园, 等. 胶原蛋白/纤维素纳米晶体敷料的制备及性能 [J]. 功能高分子学报,2020,33(01):78-85.

    ZHOU S Y, XU S Q, LIANG L Y, et al. Preparation and properties of collagen/cellulose nanocrystals dressing [J]. Journal of Functional Polymers,2020,33(01):78-85.
    [11] HUANG J, MA X, YANG G, et al. Nanocellulose: from fundamentals to advanced materials [M]. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, 2019.
    [12] LIU S, GONG Y, MA S, et al. Antistatic structural color and photoluminescent membranes from co-assembling cellulose nanocrystals and carbon nanomaterials for anti-counterfeiting [J]. Chinese Journal of Polymer Science,2020,38(10):1061-1071. doi: 10.1007/s10118-020-2414-x
    [13] WU C, ZHANG T, ZHANG J, et al. A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect [J]. Nanoscale Horizons,2020,5(3):541-552. doi: 10.1039/C9NH00671K
    [14] WANG Y, XIE R, LI D, et al. A cross-linking/percolating-integrated strategy to enhance crystallizable rubber using rod-like reactive biobased nanocrystals [J]. ACS Applied Bio Materials,2020,3(1):441-449. doi: 10.1021/acsabm.9b00901
    [15] ZHENG S, LIU S, XIAO B, et al. Integrate nanoscale assembly and plasmonic resonance to enhance photoluminescence of cellulose nanocrystals for optical information hiding and reading [J]. Carbohydr Polym,2021,253:117260. doi: 10.1016/j.carbpol.2020.117260
    [16] 符雪娇, 岳军锋, 罗列红, 等. 纤维素纳米晶基阻燃剂成炭对聚丁二酸丁二醇酯火安全行为研究[J]. 高分子学报, 2020, 51(08): 911-920.

    Fu X J, YUE J F, LUO L H, et al. Combustion carbonization of cellulose nanocrystal-based flame retardant to enhance fire-safety behaviors of poly(butylene succinate)[J]. 2020, 51(08): 911-920.
    [17] GAN L, WANG Y, ZHANG M, et al. Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements [J]. Science Bulletin,2019,64(13):934-940. doi: 10.1016/j.scib.2019.05.013
    [18] ZHANG Y, MA X, GAN L, et al. Fabrication of fluorescent cellulose nanocrystal via controllable chemical modification towards selective and quantitative detection of Cu(ii) ion [J]. Cellulose,2018,25(10):5831-5842. doi: 10.1007/s10570-018-1995-9
    [19] XIANG S, MA X, LIAO S, et al. Cellulose nanocrystal surface cationization: a new fungicide with high activity against phycomycetes capsici [J]. Molecules,2019,24(13):2467. doi: 10.3390/molecules24132467
    [20] LI N, LU W, YU J, et al. Rod-like cellulose nanocrystal/cis-aconityl-doxorubicin prodrug: a fluorescence-visible drug delivery system with enhanced cellular uptake and intracellular drug controlled release [J]. Materials Science & Engineering C-Materials Biological Applications,2018,91:179-189.
    [21] SHEN Y, LI X, LAN Y, et al. Enhancing magnetic resonance imaging of bio-based nano-contrast via anchoring manganese on rod-shaped cellulose nanocrystals [J]. Cellulose,2021,28(5):2905-2916. doi: 10.1007/s10570-021-03693-1
    [22] GAN L, FENG N, LIU S, et al. Assembly-induced emission of cellulose nanocrystals for hiding information [J]. Particle & Particle Systems Characterization,2019,36(3):1800412.
    [23] GAN L, LIAO J, LIN N, et al. Focus on gradientwise control of the surface acetylation of cellulose nanocrystals to optimize mechanical reinforcement for hydrophobic polyester-based nanocomposites [J]. Acs Omega,2017,2(8):4725-4736. doi: 10.1021/acsomega.7b00532
    [24] HU F, LIN N, CHANG P, et al. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites [J]. Carbohydrate Polymers,2015,129:208-215. doi: 10.1016/j.carbpol.2015.04.061
    [25] ZHAO W, LI X, GAO S, et al. Understanding mechanical characteristics of cellulose nanocrystals reinforced phema nanocomposite hydrogel: in aqueous cyclic test [J]. Cellulose,2017,24(5):2095-2110. doi: 10.1007/s10570-017-1244-7
    [26] LIN N, HUANG J, CHANG P, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid) [J]. Carbohydrate Polymers,2011,83(4):1834-1842. doi: 10.1016/j.carbpol.2010.10.047
    [27] WANG Y, LIAO J, LU J, et al. Regulating surface molecular structure of cellulose nanocrystals to optimize mechanical reinforcement effect on hydrophobic bio-based polyesters [J]. Iranian Polymer Journal,2020,29(8):693-705. doi: 10.1007/s13726-020-00832-6
    [28] ZHANG X, HUANG J, CHANG P, et al. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion [J]. Polymer,2010,51(19):4398-4407. doi: 10.1016/j.polymer.2010.07.025
    [29] LIN N, GEZE A, WOUESSIDJEWE D, et al. Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery [J]. ACS Applied Materials & Interfaces,2016,8(11):6880-6889.
    [30] CHANG P, AI F, CHEN Y, et al. Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites [J]. Journal of Applied Polymer Science,2009,111(2):619-627.
    [31] CHEN J, LIN N, HUANG J, et al. Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry [J]. Polymer Chemistry,2015,6(24):4385-4395. doi: 10.1039/C5PY00367A
    [32] LIN S, HUANG J, CHANG P, et al. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal [J]. Carbohydrate Polymers,2013,95(1):91-99. doi: 10.1016/j.carbpol.2013.02.023
    [33] CAPADONA J, SHANMUGANATHAN K, TYLER D, et al. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis [J]. Science,2008,319(5868):1370-1374. doi: 10.1126/science.1153307
    [34] LI D, WANG Y, LONG F, et al. Solvation-controlled elastification and shape-recovery of cellulose nanocrystal-based aerogels [J]. ACS Appllied Materials Interfaces,2020,12(1):1549-1557. doi: 10.1021/acsami.9b18569
    [35] REVOL J, BRADFORD H, GIASSON J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension [J]. International Journal of Biological Macromolecules,1992,14(3):170-172. doi: 10.1016/S0141-8130(05)80008-X
    [36] HABIBI Y, LUCIA L, ROJAS O. Cellulose nanocrystals: chemistry, self-assembly, and applications [J]. Chemical Reviews,2010,110(6):3479-3500. doi: 10.1021/cr900339w
    [37] USOV I, NYSTROM G, ADAMCIK J, et al. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level [J]. Nature Communications,2015,6:7564. doi: 10.1038/ncomms8564
    [38] GIESE M, BLUSCH L, KHAN M, et al. Functional materials from cellulose-derived liquid-crystal templates [J]. Angewandte Chemie-International Edition,2015,54(10):2888-2910. doi: 10.1002/anie.201407141
    [39] REVOL J, GODBOUT L, GRAY D. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties [J]. Journal of Pulp and Paper Science,1998,24(5):146-149.
    [40] CAO Y, HAMAD W, MACLACHLAN M. Broadband circular polarizing film based on chiral nematic liquid crystals [J]. Advanced Optical Materials,2018,6(17):1800412. doi: 10.1002/adom.201800412
    [41] GREY P, FERNANDES S, GASPAR D, et al. Field-effect transistors on photonic cellulose nanocrystal solid electrolyte for circular polarized light sensing [J]. Advanced Functional Materials,2019,29(21):1805279. doi: 10.1002/adfm.201805279
    [42] HONG W, YUAN Z, CHEN X. Structural color materials for optical anticounterfeiting [J]. Small,2020,16(16):1907626. doi: 10.1002/smll.201907626
    [43] BOOTT C, TRAN A, HAMAD W, et al. Cellulose nanocrystal elastomers with reversible visible color [J]. Angewandte Chemie-International Edition,2020,59(1):226-231. doi: 10.1002/anie.201911468
    [44] DEVRIES H. Rotatory power and other optical properties of certain liquid crystals [J]. Acta Crystallographica,1951,4(3):219-226. doi: 10.1107/S0365110X51000751
    [45] CHU G, WANG X, YIN H, et al. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles [J]. ACS Applied Materials & Interfaces,2015,7(39):21797-21806.
    [46] KELLY J, GIESE M, SHOPSOWITZ K, et al. The development of chiral nematic mesoporous materials [J]. Accounts of Chemical Research,2014,47(4):1088-1096. doi: 10.1021/ar400243m
    [47] CHEN Q, LIU P, NAN F, et al. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique [J]. Biomacromolecules,2014,15(11):4343-4350. doi: 10.1021/bm501355x
    [48] DUMANLI A, KAMITA G, LANDMAN J, et al. Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors [J]. Advanced Optical Materials,2014,2(7):646-650. doi: 10.1002/adom.201400112
    [49] MU X, GRAY D. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process [J]. Langmuir,2014,30(31):9256-9260. doi: 10.1021/la501741r
    [50] TRAN A, HAMAD W, MACLACHLAN M. Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures [J]. Langmuir,2018,34(2):646-652. doi: 10.1021/acs.langmuir.7b03920
    [51] WANG Z, YUAN Y, HU J, et al. Origin of vacuum-assisted chiral self-assembly of cellulose nanocrystals [J]. Carbohydrate Polymers,2020:245(116459.
    [52] KHAN M, GIESE M, YU M, et al. Flexible mesoporous photonic resins with tunable chiral nematic structures [J]. Angewandte Chemie-International Edition,2013,52(34):8921-8924. doi: 10.1002/anie.201303829
    [53] ARAKI J, WADA M, KUGA S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting [J]. Langmuir,2001,17(1):21-27. doi: 10.1021/la001070m
    [54] CASTRO-GUERRERO C, GRAY D. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate [J]. Cellulose,2014,21(4):2567-2577. doi: 10.1007/s10570-014-0308-1
    [55] EASTOE J, DALTON J, ROGUEDA P, et al. Interfacial properties of a catanionic surfactant [J]. Langmuir,1996,12(11):2706-2711. doi: 10.1021/la960123q
    [56] DONG X, KIMURA T, REVOL J, et al. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites [J]. Langmuir,1996,12(8):2076-2082. doi: 10.1021/la950133b
    [57] DONG X, GRAY D. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites [J]. Langmuir,1997,13(8):2404-2409. doi: 10.1021/la960724h
    [58] LAGERWALL J, SCHUTZ C, SALAJKOVA M, et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films [J]. Npg Asia Materials,2014,6:e80. doi: 10.1038/am.2013.69
    [59] BECK S, BOUCHARD J, BERRY R. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose [J]. Biomacromolecules,2011,12(1):167-172. doi: 10.1021/bm1010905
    [60] PARKER R, GUIDETTI G, WILLIAMS C, et al. The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance [J]. Advanced Materials,2018,30(19):1704477. doi: 10.1002/adma.201704477
    [61] TRAN A, HAMAD W, MACLACHLAN M. Fabrication of cellulose nanocrystal films through differential evaporation for patterned coatings [J]. Acs Applied Nano Materials,2018,1(7):3098-3104. doi: 10.1021/acsanm.8b00947
    [62] BECK S, BOUCHARD J, CHAUVE G, et al. Controlled production of patterns in iridescent solid films of cellulose nanocrystals [J]. Cellulose,2013,20(3):1401-1411. doi: 10.1007/s10570-013-9888-4
    [63] REVOL J, GODBOUT L, DONG X, et al. Chiral nematic suspensions of cellulose crystallites - phase-separation and magnetic-field orientation [J]. Liquid Crystals,1994,16(1):127-134. doi: 10.1080/02678299408036525
    [64] SONG G, KIMURA F, KIMURA T, et al. Orientational distribution of cellulose nanocrystals in a cellulose whisker as studied by diamagnetic anisotropy [J]. Macromolecules,2013,46(22):8957-8963. doi: 10.1021/ma401788c
    [65] HABIBI Y, HEIM T, DOUILLARD R. Ac electric field-assisted assembly and alignment of cellulose nanocrystals [J]. Journal of Polymer Science Part B-Polymer Physics,2008,46(14):1430-1436. doi: 10.1002/polb.21479
    [66] FRKA-PETESIC B, RADAVIDSON H, JEAN B, et al. Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields [J]. Advanced Materials,2017,29(11):1606208. doi: 10.1002/adma.201606208
    [67] HARADA A, NISHIYAMA T, KAWAGUCHI Y, et al. Preparation and characterization of inclusion complexes of aliphatic polyesters with cyclodextrins [J]. Macromolecules,1997,30(23):7115-7118. doi: 10.1021/ma970680z
    [68] CRANSTON E, GRAY D. Birefringence in spin-coated films containing cellulose nanocrystals [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,325(1-2):44-51.
    [69] CHENG Z, MA Y, YANG L, et al. Plasmonic-enhanced cholesteric films: coassembling anisotropic gold nanorods with cellulose nanocrystals [J]. Advanced Optical Materials,2019,7(9):1801816. doi: 10.1002/adom.201801816
    [70] CHU G, WANG X, CHEN T, et al. Optically tunable chiral plasmonic guest-host cellulose films weaved with long-range ordered silver nanowires [J]. ACS Applied Materials & Interfaces,2015,7(22):11863-11870.
    [71] TAO J, XU Y. Cellulose nanocrystals-based chiroptical materials [J]. Paper and Biomaterials,2020,5(3):14-30.
    [72] SUNG Y, FAN W, ZOU C, et al. Ternary supramolecular ensembles of cellulose nanocrystals exhibiting multiscale deformation and mechano/chemoresponsive selective reflection of circularly polarized light [J]. Acs Sustainable Chemistry & Engineering,2019,7(7):6851-6858.
    [73] YAO K, MENG Q, BULONE V, et al. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color [J]. Advanced Materials,2017,29(28):1701323. doi: 10.1002/adma.201701323
    [74] QUEREJETA-FERNANDEZ A, CHAUVE G, METHOT M, et al. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals [J]. Journal of the American Chemical Society,2014,136(12):4788-4793. doi: 10.1021/ja501642p
    [75] VOLLICK B, KUO P, THERIEN-AUBIN H, et al. Composite cholesteric nanocellulose films with enhanced mechanical properties [J]. Chemistry of Materials,2017,29(2):789-795. doi: 10.1021/acs.chemmater.6b04780
    [76] KELLY J, SHUKALIAK A, CHEUNG C, et al. Responsive photonic hydrogels based on nanocrystalline cellulose [J]. Angewandte Chemie-International Edition,2013,52(34):8912-8916. doi: 10.1002/anie.201302687
    [77] CHEN J, XU L, LIN X, et al. Self-healing responsive chiral photonic films for sensing and encoding [J]. Journal of Materials Chemistry C,2018,6(29):7767-7775. doi: 10.1039/C8TC02666A
    [78] GIESE M, KHAN M, HAMAD W, et al. Imprinting of photonic patterns with thermosetting amino-formaldehyde-cellulose composites [J]. Acs Macro Letters,2013,2(9):818-821. doi: 10.1021/mz4003722
    [79] CHEN Q, LIU P, SHENG C, et al. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique [J]. Rsc Advances,2014,4(74):39301-39304. doi: 10.1039/C4RA05921B
    [80] WANG X, FENG N, SHI Z, et al. Stimuli-responsive flexible membrane via co-assembling sodium alginate into assembly membranes of rod-like cellulose nanocrystals with an achiral array [J]. Carbohydrate Polymers,2021,262:117949. doi: 10.1016/j.carbpol.2021.117949
    [81] 黄进, 甘霖, 刘思源. 一种柔性发光材料及其制备方法和应用[P]. 中国, CN201910578349.6, 2019-08-30

    HUANG J, GAN L, LIU S Y. Flexible luminescent material and preparation method and application thereof[P]. China, CN201910578349.6, 2019-08-30.
    [82] 黄进, 谌阳, 孙现超, 等. 一种生物基抗菌抗病毒纳米材料及其制备方法与应用[P]. 中国, CN201911402063.9, 2020-05-12

    HUANG J, SHEN Y, SUN X C, et al. Bio-based antibacterial and antiviral nanometer material, and preparation method and application thereof[P]. China, CN201911402063.9, 2020-05-12.
    [83] 黄进, 岳军锋, 刘昌华, 等. 一种生物基阻燃剂及其制备方法和应用[P]. 中国, CN201910335196.2, 2019-07-23

    HUANG J, YUE J F, LIU C H, et al. Bio-based flame retardant as well as preparation method and application thereof[P]. China, CN201910335196.2, 2019-07-23.
  • 加载中
图(3)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  19
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 录用日期:  2021-08-19
  • 网络出版日期:  2022-03-08

目录

    /

    返回文章
    返回