高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金纳米粒子/聚吡咯-聚多巴胺电化学免疫传感器

曲春波 张静怡 那立欣 罗静

曲春波, 张静怡, 那立欣, 罗静. 金纳米粒子/聚吡咯-聚多巴胺电化学免疫传感器[J]. 功能高分子学报. doi: 10.14133/J.CNKI.1008-9357.20210411002
引用本文: 曲春波, 张静怡, 那立欣, 罗静. 金纳米粒子/聚吡咯-聚多巴胺电化学免疫传感器[J]. 功能高分子学报. doi: 10.14133/J.CNKI.1008-9357.20210411002
QU Chunbo, ZHANG Jingyi, NA Lixin, LUO Jing. Electrochemical Immunosensor Based on Gold Nanoparticles/Polypyrrole-Polydopamine[J]. Journal of Functional Polymers. doi: 10.14133/J.CNKI.1008-9357.20210411002
Citation: QU Chunbo, ZHANG Jingyi, NA Lixin, LUO Jing. Electrochemical Immunosensor Based on Gold Nanoparticles/Polypyrrole-Polydopamine[J]. Journal of Functional Polymers. doi: 10.14133/J.CNKI.1008-9357.20210411002

金纳米粒子/聚吡咯-聚多巴胺电化学免疫传感器

doi: 10.14133/J.CNKI.1008-9357.20210411002
基金项目: 国家自然科学基金(51573072)
详细信息
    作者简介:

    曲春波(1980—),山东青岛人,副教授,从事生物医用高分子的研究。E-mail:quchunbo@163.com

    通讯作者:

    罗静,E-mail: jingluo19801007@126.com

  • 中图分类号: O632.6

Electrochemical Immunosensor Based on Gold Nanoparticles/Polypyrrole-Polydopamine

  • 摘要: 以金纳米粒子功能化的聚吡咯-聚多巴胺(PPy-PDA)为基质材料,构建了电化学免疫传感器,用于癌胚抗原(CEA)的检测。首先制备了PPy-PDA复合物,通过聚多巴胺的弱还原性原位还原氯金酸,得到纳米金/聚吡咯-聚多巴胺(Au/PPy-PDA)纳米复合材料。该复合材料具有优异的导电性、水分散性、黏附性,能够在电极表面形成均一、稳定且生物相容性优良的导电膜,利用纳米金与癌胚抗体的特殊作用固定癌胚抗体,并通过牛血清白蛋白屏蔽电极表面的非特异性吸附点,从而构筑了一种用于检测CEA的电化学免疫传感器。所制备的传感器对CEA具有特异性、识别性,在最优条件下,对CEA的线性检测范围为10−12 ~5×10−7 g/mL,检测下限为0.2 pg/mL。此外,还考察了该传感器的重现性和稳定性,并进行了实际样品中CEA的回收实验。该传感器具有检测范围宽、检测限低、稳定性好的特点,在生物医学、临床诊断等方面具有潜在的应用价值。

     

  • 图  1  基于Au/PPy-PDA的电化学免疫传感器的制备示意图

    Figure  1.  Schematic illustration of preparation procedure of electrochemical immunosensor based on Au/PPy-PDA nanocomposite

    图  2  PDA、PPy、PPy-PDA的红外谱图

    Figure  2.  FT-IR spectra of PDA, PPy and PPy-PDA

    图  3  PPy-PDA和PPy的黏附性能:(a) 载玻片上PPy-PDA和PPy膜的照片;(b)胶带黏贴PPy-PDA和PPy膜后的照片;(c)撕拉后的胶带

    Figure  3.  Photographs of the PPy or PPy-PDA coated glass slides (a)before and (b)after the Scotch tape detachment test ; (c)Photographs of the tapes after the pull-of tests

    图  4  (a)PPy、(b)PDA 、(c)PPy-PDA和(d)Au/PPy-PDA的扫描显微镜图

    Figure  4.  SEM images of (a) PPy, (b) PDA, (c) PPy-PDA and (d) Au/PPy-PDA

    图  5  Au/PPy-PDA的元素(a)C,(b)N,(c) O和(d)Au的EDS能谱图

    Figure  5.  EDS images of (a) C,(b) N,(c) O and (d) Au of Au/PPy-PDA

    图  6  (a)不同修饰电极在5 mmol/L K3Fe(CN)4-K4Fe(CN)6溶液中的交流阻抗特性曲线;(b) nDA/nPy对免疫传感器ΔRct的影响

    Figure  6.  (a) Nyquist plots corresponding to various modified electrodes in 5 mmol/L K3 Fe(CN)4-K4 Fe(CN)6 solution; (b) Nyquist plots of modified electrodes prepared at different nDA/nPy

    图  7  (a)传感器的电化学阻抗值随CEA质量浓度的变化曲线;(b)ΔRct与CEA质量浓度之间的关系

    Figure  7.  (a) Nyquist plots of the prepared immunosensor incubated with different mass concentrations CEA: (b) Plot of ΔRct as a function of the mass concentration of CEA

    表  1  检测性能的比较

    Table  1.   Comparison of analytical performance

    Immunosensor matrixLinear range /(ng mL−1Detection limit /(pg mL−1Reference
    rGO-Thi-AuNPs0.01~3000.65[13]
    SPA/AuNPs/HDTs0.001~1000.1[14]
    AuNP-Thi-MoS2 composites0.001~100.52[15]
    Au/PDA/Fe3O4@C@PGC0.01~200.33[16]
    Au/PPy-PDA composite0.001~5000.2This work
    下载: 导出CSV
  • [1] 刘涛, 冯俊, 张先正. 用于肿瘤诊疗的金属-多酚网络多功能材料 [J]. 功能高分子学报,2019,32(4):421-433.

    LIU T, FENG J, ZHANG X Z. Metal-polyphenol network based multifunctional materials for theranostic applications [J]. Journal of Functional Polymers,2019,32(4):421-433.
    [2] QIU Z L, SHU J, LIU J F, et al. Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device [J]. Anal Chem,2019,91(2):1260-1268. doi: 10.1021/acs.analchem.8b05455
    [3] XIAO L P, ZHU A M, XU Q C, et al. Colorimetric biosensor for detection of cancer biomarker by Au nanoparticle-decorated Bi2Se3 nanosheets [J]. ACS Appl Mater Interfaces,2017,9(8):6931-6940. doi: 10.1021/acsami.6b15750
    [4] JIA Y L, LI Y Y, ZHANG S A, et al. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA [J]. Biosens Bioelectron,2020,149:111842. doi: 10.1016/j.bios.2019.111842
    [5] GE L, WANG W X, SUN X M, et al. Affinity-mediated homogeneous electrochemical aptasensor on a graphene platform for ultrasensitive biomolecule detection via exonuclease-assisted target-analog recycling amplification [J]. Anal Chem,2016,88(4):2212-2219. doi: 10.1021/acs.analchem.5b03844
    [6] PALOMAR Q, GONDRAN C, HOLZINGER M, et al. Controlled carbon nanotube layers for impedimetric immunosensors: High performance label free detection and quantification of anti-cholera toxin antibody [J]. Biosensors and Bioelectronics,2017,97:177-183. doi: 10.1016/j.bios.2017.05.052
    [7] RANA S, BHARTI A, SINGH S, et al. Gold-silver nanoparticle-based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin [J]. Microchimica Acta,2020,187(11):626. doi: 10.1007/s00604-020-04599-8
    [8] MIODEK A, LE H Q, SAURIAT-DORIZON H, et al. Streptavidin-polypyrrole film as platform for biotinylated redox probe immobilization for electrochemical immunosensor application [J]. Electroanalysis,2016,28(8):1824-1832. doi: 10.1002/elan.201600139
    [9] ZHANG W, YANG F K, PAN Z H, et al. Bio-inspired dopamine functionalization of polypyrrole for improved adhesion and conductivity [J]. Macromol Rap Commun,2014,35(20):1808-1808. doi: 10.1002/marc.201400509
    [10] MA F F, ZHANG D, ZHANG N, et al. Polydopamine-assisted deposition of polypyrrole on electrospun poly (vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes [J]. Chemical Engineering Journal,2018,354:432-444. doi: 10.1016/j.cej.2018.08.048
    [11] LIN Q, YANG Y, MA Y, et al. Bandgap engineered polypyrrole-polydopamine hybrid with intrinsic raman and photoacoustic imaging contrasts [J]. Nano Lett,2018,18(12):7485-7493. doi: 10.1021/acs.nanolett.8b02901
    [12] LUO J, ZHANG N, LIU R, et al. In situ green synthesis of Au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol [J]. RSC Adv,2014,4(110):64816-64824. doi: 10.1039/C4RA11950A
    [13] JIA X, LIU Z, LIU N, et al. A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers [J]. Biosens Bioelectron,2014,53:160-166. doi: 10.1016/j.bios.2013.09.050
    [14] ZHOU J, DU L, ZOU L, et al. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A-Au nanoparticle modified gold electrode [J]. Sensors and Actuators B,2014,197:220-227. doi: 10.1016/j.snb.2014.02.009
    [15] SU S, ZOU M, ZHAO H, et al. Shape-controlled gold nanoparticles supported on MoS2 nanosheets: Synergistic effect of thionine and MoS2 and their application for electrochemical label-free immunosensing [J]. Nanoscale,2015,7(45):19129-19135. doi: 10.1039/C5NR05614D
    [16] JI L, YAN T, LI Y, et al. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcinoembryonic antigen [J]. Sci Rep,2016,6:21017. doi: 10.1038/srep21017
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  79
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-11
  • 网络出版日期:  2021-07-09

目录

    /

    返回文章
    返回