高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr-Fc MOF@MN复合微针的制备及其光热抗菌性能

袁颖慧 尚亚廷 郭江娜 周莹杰 严锋

袁颖慧, 尚亚廷, 郭江娜, 周莹杰, 严 锋. Zr-Fc MOF@MN复合微针的制备及其光热抗菌性能[J]. 功能高分子学报,2022,35(5):435-444 doi: 10.14133/j.cnki.1008-9357.20220103002
引用本文: 袁颖慧, 尚亚廷, 郭江娜, 周莹杰, 严 锋. Zr-Fc MOF@MN复合微针的制备及其光热抗菌性能[J]. 功能高分子学报,2022,35(5):435-444 doi: 10.14133/j.cnki.1008-9357.20220103002
YUAN Yinghui, SHANG Yating, GUO Jiangna, ZHOU Yingjie, YAN Feng. Preparation and Photothermal Antibacterial Properties of Zr-Fc MOF@MN Composited Microneedles[J]. Journal of Functional Polymers, 2022, 35(5): 435-444. doi: 10.14133/j.cnki.1008-9357.20220103002
Citation: YUAN Yinghui, SHANG Yating, GUO Jiangna, ZHOU Yingjie, YAN Feng. Preparation and Photothermal Antibacterial Properties of Zr-Fc MOF@MN Composited Microneedles[J]. Journal of Functional Polymers, 2022, 35(5): 435-444. doi: 10.14133/j.cnki.1008-9357.20220103002

Zr-Fc MOF@MN复合微针的制备及其光热抗菌性能

doi: 10.14133/j.cnki.1008-9357.20220103002
基金项目: 国家自然科学基金(21835005, U1862109和22005045);东华大学青年教师科研基金;中央高效基本科研业务费专项资金项目(2232020D-07)
详细信息
    作者简介:

    袁颖慧(1997—),女,硕士研究生,主要研究方向为抗菌生物医用材料。E-mail:630058303@qq.com

    通讯作者:

    郭江娜,E-mail:guojn@suda.edu.cn

    严 锋,E-mail:fyan@suda.edu.cn

  • 中图分类号: O69

Preparation and Photothermal Antibacterial Properties of Zr-Fc MOF@MN Composited Microneedles

  • 摘要: 将光热性锆-二茂铁基金属有机框架(Zr-Fc MOF)负载到可溶性聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)微针(MN)中,开发了一种基于可溶性Zr-Fc MOF负载微针(Zr-Fc MOF@MN)的光热抗菌疗法。采用自下而上法水热合成具有光热性能的Zr-Fc MOF纳米片,通过X射线衍射、傅里叶红外光谱和扫描电子显微镜对Zr-Fc MOF的结构和形貌进行了表征,并利用红外线热像仪和涂板计数法研究了其光热性能和抗菌性能。进一步通过模板法制备Zr-Fc MOF@MN,并研究其溶解性能和抗菌性能。结果表明:所合成的Zr-Fc MOF光热性能良好,Zr-Fc MOF(0.4 mg/mL)在2.6 W/cm2近红外光照射10 min后温度可上升至57.4 ℃,表现出100%的抗菌率;Zr-Fc MOF@MN可在水溶液中溶解,表现出优异的光热抗菌率(100%)和低溶血率。

     

  • 图  1  微针贴片制备流程

    Figure  1.  Preparation process of microneedle patch

    图  2  Zr-Fc MOF的制备示意图

    Figure  2.  Schematic diagram of Zr-Fc MOF preparation

    图  3  Zr-Fc MOF的(a)XRD谱图、(b)FT-IR谱图、(c)粒径分布图和(d)SFM微观形貌照片

    Figure  3.  (a) XRD pattern, (b) FT-IR spectra, (c) size distribution and (d) SEM microtopography of Zr-Fc MOF

    图  4  (a,b)Zr-Fc MOF在近红外光照射下的温度随时间变化曲线;(c)近红外光(808 nm,2.6 W/cm2)照射下Zr-Fc MOF分散液(ρ=500 μg/mL)的热红外图像

    Figure  4.  (a,b)Time-temperature change curves of Zr-Fc MOF suspensions NIR irradiation; (c) Thermographic images of Zr-Fc MOF (ρ= 500 μg/mL) during the NIR irradiation (808 nm, 2.6 W/cm2)

    图  5  Zr-Fc MOF的抗菌性能

    Figure  5.  Antibacterial properties of Zr-Fc MOF

    图  6  (a~c)大肠杆菌、(a1~c1)金黄色葡萄球菌与Zr-Fc MOF(250 μg/mL)培养后的微观形貌

    Figure  6.  Bacterial morphology of (a—c) E. coli and (a1—c1) S. aureus after cocultured with Zr-Fc MOF (250 μg/mL)

    图  7  不同比例和质量分数的PVA和PVP所制备的微针宏观形貌

    Figure  7.  Macromorphology of microneedles prepared by different proportions and mass fractions of PVA and PVP

    图  8  Zr-Fc MOF@MN的(a)整体视图、(b)侧视图和(c)俯视图

    Figure  8.  (a) Overall view, (b) side view and (c) vertical view of Zr-Fc MOF@MN

    图  9  Zr-Fc MOF@RhB@MN贴片放置在去离子水中的浸泡1 h(a)前(b)后的微针溶解和RhB释放示意图

    Figure  9.  Schematic diagram of the dissolution and RhB release of Zr-Fc MOF@RhB@MN patch soak 1 h (a) before and (b) after dipped in deionized water

    图  10  细菌与Zr-Fc MOF和Zr-Fc MOF@MN的(a)细菌菌落图像和(b)细菌存活率

    Figure  10.  (a) Bacterial colony assay and (b) bacterial viability of bacteria cocultured with Zr-Fc MOF and Zr-Fc MOF@MN

    图  11  Zr-Fc MOF和Zr-Fc MOF@MN的溶血率

    Figure  11.  Hemolysis ratios of Zr-Fc MOF and Zr-Fc MOF@MN

  • [1] 郝飞. 皮肤及软组织感染诊断和治疗共识 [J]. 临床皮肤科杂志,2009,38(12):810-812. doi: 10.3969/j.issn.1000-4963.2009.12.036

    HAO F. Consensus on diagnosis and treatment of skin and soft tissue infections [J]. Journal of Clinical Dermatology,2009,38(12):810-812. doi: 10.3969/j.issn.1000-4963.2009.12.036
    [2] JAMALEDIN R, YIU C K Y, ZARE E N, NIU L N, VECCHIONE R, CHEN G, GU Z, TAY F R, MAKVANDI P. Advances in antimicrobial microneedle patches for combating infections [J]. Advanced Materials,2020line-height-add:0.7pt,32(33):e2002129. doi: 10.1002/adma.202002129
    [3] ZHANG L, GUO R, WANG S, YANG X T. Fabrication, evaluation and applications of dissolving microneedles [J]. International Journal of Pharmaceutics,2021,604:120749. doi: 10.1016/j.ijpharm.2021.120749
    [4] 朱益锐, 蔡志祥, 郭亚龙, 张洪斌. 基于透明质酸构建的功能材料及其在生物医药领域中的应用 [J]. 功能高分子学报,2021,34(1):26-48. doi: 10.14133/j.cnki.1008-9357.20200615001

    ZHU Y R, CAI Z X, GUO Y L, ZHANG H B. Hyaluronan-based functional materials for their biomedical applications [J]. Journal of Functional Polymers,2021,34(1):26-48. doi: 10.14133/j.cnki.1008-9357.20200615001
    [5] ZHOU Y J, PAN J, OU X, LIU Q B, HU Y, LI W Z, WU R L, WEN J, FENG Y. CO2 Ionized poly(vinyl alcohol) electrolyte for CO2-tolerant Zn-air batteries [J]. Advanced Energy Materials,2021,11(38):2102047. doi: 10.1002/aenm.202102047
    [6] JIANG S, LIU S, FENG W H. PVA hydrogel properties for biomedical application [J]. Journal of the Mechanical Behavior of Biomedical Materials,2011,4(7):1228-1233. doi: 10.1016/j.jmbbm.2011.04.005
    [7] 马婷芳, 史铁均. 聚乙烯吡咯烷酮的性能、合成及应用 [J]. 应用化工,2002(3):16-19. doi: 10.3969/j.issn.1671-3206.2002.04.006

    MA T F, SHI T J. Synthesis and application of polyvinylpyrrolidone [J]. Applied Chemical Industry,2002(3):16-19. doi: 10.3969/j.issn.1671-3206.2002.04.006
    [8] DING X K, DUAN S, DING X J, LIU R H, XU F J. Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens [J]. Advanced Functional Materials,2018,28(40):1802140. doi: 10.1002/adfm.201802140
    [9] XU J, DANEHY R, CAI H W, AO Z, PU M, NUSAWARDHANA A, ROWE-MAGNUS D, GUO F. Microneedle patch-mediated treatment of bacterial biofilms [J]. ACS Applied Materials & Interfaces,2019,11(16):14640-14646. doi: 10.1021/acsami.9b02578
    [10] ZAN P, THAN A, DUONG P K, SONG J H, XU C H, PENG C. Antimicrobial microneedle patch for treating deep cutaneous fungal infection [J]. Advanced Therapeutics,2019,2(10):1900064. doi: 10.1002/adtp.201900064
    [11] SU Y, MAINARDI V L, WANG H J, MCCARTHY A, ZHANG Y S, CHEN S X, JOHN J V, WONG S L, HOLLINES R R, WAGN G S, XIE J W. Dissolvable microneedles coupled with nanofiber dressings eradicate biofilms via effectively delivering a database-designed antimicrobial peptide [J]. ACS Nano,2020,14(9):11775-11786. doi: 10.1021/acsnano.0c04527
    [12] ZHANG T K, SUN B, GUO J N, WANG M Y, GUI H Q, MAO H L, WANG B, YAN F. Active pharmaceutical ingredient poly(ionic liquid)-based microneedles for the treatment of skin acne infection [J]. Acta Biomaterialia,2020,115:136-147. doi: 10.1016/j.actbio.2020.08.023
    [13] LUO Z H, CUI H Q, GUO J N, YAO J R, FANG X, YAN F, WANG B, MAO H L. Poly(ionic liquid)/Ce-blased antimicrobial nanofibrous membrane for blocking drug-resistance dissemination from MRSA-infected wounds [J]. Advanced Functional Materials,2021,31(23):2100336. doi: 10.1002/adfm.202100336
    [14] WANG M Y, SHI J, MAO H L, SUN Z, GUO J N, FENG Y. Fluorescent imidazolium-type poly(ionic liquid)s for bacterial imaging and biofilm inhibition [J]. Biomacromolecules,2019,20(8):3161-3170. doi: 10.1021/acs.biomac.9b00741
    [15] WANG A Z, DUAN S, DING X J, ZHAO N N, HU Y, DING X K, XU F J. Bioswitchable antibacterial coatings enable self-sterilization of implantable healthcare dressings [J]. Advanced Functional Materials,2021,31(18):2011165. doi: 10.1002/adfm.202011165
    [16] ZHENG S J, LI W Z, REN Y Y, LIU Z Y, ZOU X Y, HU Y, GUO J N, SUN Z, YAN F. Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes [J]. Advanced Materials,2021,34(4):2106570. doi: 10.1002/adma.202106570
    [17] 郭江娜, 史洁, 汪梦瑶, 冒海蕾, 严锋. 阳离子聚合物抗菌性能影响因素的研究进展 [J]. 南通大学学报(自然科学版),2021,20(1):1-13. doi: 10.12194/j.ntu.20200423001

    GUO J N, SHI J, WANG M Y, MAO H L, YAN F. Research progress of influence factor of cationic antibacterial polymers [J]. Journal of Nantong University (Natural Science Edition),2021,20(1):1-13. doi: 10.12194/j.ntu.20200423001
    [18] CHEN M C, LIN Z W, LING M H. Near-infrared light-activatable microneedle system for treating superficial tumors by combination of chemotherapy and photothermal therapy [J]. ACS Nano,2016,10(1):93-101. doi: 10.1021/acsnano.5b05043
    [19] CHEN Y, GAO Y J, CHEN Y, LIU L, MO A, PENG Q. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment [J]. Journal of Controlled Release,2020,328:251-262. doi: 10.1016/j.jconrel.2020.08.055
    [20] HU B, WANG N, HAN L, CHEN M L, WANG J H. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria [J]. Acta Biomaterialia,2015,11:511-519. doi: 10.1016/j.actbio.2014.09.005
    [21] WANG S G, CHEN Y Y, CHEN Y C. Antibacterial gold nanoparticle-based photothermal killing of vancomycin-resistant bacteria [J]. Nanomedicine,2018,13(12):1405-1416. doi: 10.2217/nnm-2017-0380
    [22] YUAN Z, LIN C C, HE Y, TAO B L, CHEN M W, ZHANG J X, LIU P, CAI K Y. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination [J]. ACS Nano,2020,14(3):3546-3562. doi: 10.1021/acsnano.9b09871
    [23] ZHANG H, TIAN X T, SHANG Y, LI Y H, YIN X B. Theranostic Mn-porphyrin metal-organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy [J]. ACS Applied Materials & Interfaces,2018,10(34):28390-28398. doi: 10.1021/acsami.8b09680
    [24] XIAO J D, JIANG H L. Metal-organic frameworks for photocatalysis and photothermal catalysis [J]. Accounts of Chemical Research,2019,52(2):356-366. doi: 10.1021/acs.accounts.8b00521
    [25] DENG Z, FANG C, MA X, LI X, ZENG Y J, PENG X S. One stone two birds: Zr-Fc metal-organic framework nanosheet for synergistic photothermal and chemodynamic cancer therapy [J]. ACS Applied Materials & Interfaces,2020,12(18):20321-20330. doi: 10.1021/acsami.0c06648
    [26] DENG Z, YU H J, WANG L, SHEA L J. Ferrocene-based metal-organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst [J]. Journal of Materials Chemistry A,2019,7(26):15975-15980. doi: 10.1039/C9TA03403J
    [27] MA J, WONG-FOY A G, MATZGER A J. The role of modulators in controlling layer spacings in a tritopic linker based zirconium 2D microporous coordination polymer [J]. Inorganic Chemistry,2015,54(10):4591-4593. doi: 10.1021/acs.inorgchem.5b00413
    [28] 李纯毅, 付渊, 王晓莉, 张俊生. 红外光谱对二茂铁衍生物的研究 [J]. 内蒙古石油化工,2013,39(17):17-18. doi: CNKI:SUN:NMSH.0.2013-17-006

    LI C Y, FU Y, WANG X L, ZHANG J S. Study on ferrocene derivatives by infrared spectroscopy [J]. Inner Mongolia Petrochemical Industry,2013,39(17):17-18. doi: CNKI:SUN:NMSH.0.2013-17-006
  • 加载中
图(11)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  70
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-03
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-09
  • 刊出日期:  2022-09-23

目录

    /

    返回文章
    返回