高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为

胡飞 朱良宇 王雨晨 何康 ATIFMuhammad 王延梅

胡飞, 朱良宇, 王雨晨, 何康, ATIFMuhammad, 王延梅. 纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为[J]. 功能高分子学报, 2021, 34(4): 352-361. doi: 10.14133/j.cnki.1008-9357.20210119002
引用本文: 胡飞, 朱良宇, 王雨晨, 何康, ATIFMuhammad, 王延梅. 纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为[J]. 功能高分子学报, 2021, 34(4): 352-361. doi: 10.14133/j.cnki.1008-9357.20210119002
HU Fei, ZHU Liangyu, WANG Yuchen, HE Kang, ATIF Muhammad, WANG Yanmei. Adsorption and Desorption Behavior of Fibrinogen on Poly(2-methyl-2-oxazoline)/Poly(acrylic acid) Mixed Brushes[J]. Journal of Functional Polymers, 2021, 34(4): 352-361. doi: 10.14133/j.cnki.1008-9357.20210119002
Citation: HU Fei, ZHU Liangyu, WANG Yuchen, HE Kang, ATIF Muhammad, WANG Yanmei. Adsorption and Desorption Behavior of Fibrinogen on Poly(2-methyl-2-oxazoline)/Poly(acrylic acid) Mixed Brushes[J]. Journal of Functional Polymers, 2021, 34(4): 352-361. doi: 10.14133/j.cnki.1008-9357.20210119002

纤维蛋白在聚(2-甲基-2-噁唑啉)/聚丙烯酸混合聚合物刷上的吸附-脱附行为

doi: 10.14133/j.cnki.1008-9357.20210119002
基金项目: 国家自然科学基金(21674102)
详细信息
    作者简介:

    胡飞:胡 飞(1996—),男,安徽宣城人,硕士,主要研究方向为抗污涂层。E-mail:hufei123@mail.ustc.edu.cn

    通讯作者:

    王延梅,E-mail:wangyanm@ustc.edu.cn

  • 中图分类号: O647

Adsorption and Desorption Behavior of Fibrinogen on Poly(2-methyl-2-oxazoline)/Poly(acrylic acid) Mixed Brushes

  • 摘要: 以聚多巴胺(PDA)为黏结剂,在硅、玻璃和金的表面制备了由具有抗蛋白质吸附功能的聚(2-甲基-2-噁唑啉)(PMOXA)和具有刺激响应性的聚丙烯酸(PAA)组成的混合聚合物刷。通过X-射线光电子能谱(XPS)、可变角光谱椭偏仪(VASE)对其进行了表征,并利用水接触角(WCA)研究了聚合物刷表面的亲/疏水性。选取pH = 9、I = 0.01 mol/L(I为离子强度)作为纤维蛋白吸附条件,pH = 9、I = 0.15 mol/L作为脱附条件,用荧光显微镜和表面等离子共振(SPR)分别定性和定量地研究了混合聚合物刷对纤维蛋白的吸附-脱附行为。结果表明,当pH = 9,离子强度由0.01 mol/L向0.15 mol/L转变时,混合聚合物刷表面会从相对疏水状态转变为亲水状态;增加PMOXA的聚合度会减少混合聚合物刷对蛋白质的吸附量,同时也会明显改善混合聚合物刷对蛋白质的脱附率;聚合度60的PMOXA和聚合度90的PAA以质量比3∶2顺序接枝制备的混合聚合物刷实现了对纤维蛋白83.5%的脱附率。

     

  • 图  1  PMOXA-PAA混合聚合物刷制备示意图

    Figure  1.  Schematic illustration for the preparation of PMOXA-PAA mixed polymer brushes

    图  2  (a)硅片经修饰前后的XPS谱图;(b, c, d, e)修饰硅片的C1s高分辨XPS谱图

    Figure  2.  (a) XPS patterns of bare and modified silicon wafers; (b, c, d, e) High-resolution XPS spectra of C1s peaks of modified silicon wafers

    图  3  裸硅片和修饰硅片的WCA值

    Figure  3.  WCA values of bare and modified silicon wafers

    图  4  裸玻璃片和修饰玻璃片吸附FITC-Fib的荧光图像

    Figure  4.  Fluorescence images of FITC-Fib adsorbed on bare glass and modified glass

    图  5  样品的相对荧光强度

    Figure  5.  Relative fluorescence intensities of samples

    图  6  纤维蛋白在裸金片和不同聚合度PMOXA涂层金片上吸附的SPR图(pH = 9, I = 0.01 mol/L)

    Figure  6.  SPR sensorgram of fibrinogen adsorption on bare and PMOXA-coated gold surface with different degrees of polymerization(pH = 9, I = 0.01 mol/L)

    图  7  纤维蛋白在PMOXA(60)-PAA混合聚合物刷表面吸附-脱附的SPR图

    Figure  7.  SPR sensorgram of fibrinogen adsorption and desorption on PMOXA(60)-PAA mixed polymer brush surface

    图  8  混合聚合物刷对纤维蛋白吸附和脱附的可能机理

    Figure  8.  Possible mechanism of adsorption and desorption of fibrinogen on mixed brushes

    表  1  硅片修饰前后表面元素的摩尔分数及聚合物刷的相应厚度、接枝密度和接枝链间距

    Table  1.   Mole fraction of elements on the bare and modified silicon surfaces, and the corresponding thickness, grafting density and grafting chain spacing of the polymer brushes

    SampleχC1sχN1sχSi2sχS2pχO1sχN/χOd/nmσ1)/nm−2$ l $2)/nm
    Bare silicon16.420.5850.67/32.330.017 9///
    PDA72.957.292.42/17.340.420 417.0±1.4//
    PMOXA(20)71.619.882.56/15.950.619 42.2±0.30.771.14
    PMOXA(40)69.9211.330.69/18.060.627 32.5±0.30.441.51
    PMOXA(60)69.7411.511.06/17.690.650 73.2±0.50.381.62
    PAA72.086.431.391.1019.000.338 43.7±0.50.341.71
    PMOXA(20)-PAA67.706.783.010.6421.870.310 04.5±1.20.212.18
    PMOXA(40)-PAA69.847.392.970.5819.220.384 53.7±0.20.113.02
    PMOXA(60)-PAA69.118.952.490.5118.940.472 53.5±0.40.035.77
    1)$\sigma = d\rho {N_{\rm{A}}}/{M_{\rm{n}}}$, where $ d $ is the ellipsometric thickness, $ \rho $ is the density of polymer (about 1.0 g/cm3), $ {N}_{{\rm{A}}} $ is the Avogadro’s number, and ${M_{\rm{n}}}$ is the molecular weight of the grafted polymer calculated according to results of 1H-NMR. $\sigma $ of PMOXA in mixed brush should be the same as that in homopolymer brush. $\sigma $ of PAA chains in mixed brush was assumed that dmix= dm+ dA for simplicity, where dmix is the thickness of mixed brush, dm the thickness of pure PMOXA brush, and dA is the thickness of PAA in the mixed brush; 2)$ l={\sigma}^{-0.5} $
    下载: 导出CSV

    表  2  根据SPR数据计算纤维蛋白吸附量、脱附后剩余量和脱附率

    Table  2.   Mass of fibrinogen adsorption, remaining mass after desorption, and desorption rate based on SPR data

    SampleΔmadsorption/(ng·cm−2Δmafter desorption/(ng·cm−2Desorption rate/%
    Bare gold681.9561.417.7
    PDA780.7770.01.3
    PAA1318.9735.044.3
    PMOXA(20)-PAA1238.8413.566.6
    PMOXA(40)-PAA978.0218.477.7
    PMOXA(60)-PAA806.8132.983.5
    下载: 导出CSV
  • [1] TSAPIKOUNI T S, MISSIRLIS Y F. pH and ionic strength effect on single fibrinogen molecule adsorption on mica studied with AFM [J]. Colloid Surface B,2007,57(1):89-96. doi: 10.1016/j.colsurfb.2007.01.011
    [2] WASILEWSKA M, ADAMCZYK Z, JACHIMSKA B. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements [J]. Langmuir,2009,25(6):3698-3704. doi: 10.1021/la803662a
    [3] MONKAWA A, IKOMA T, YUNOKI S, et al. Fabrication of hydroxyapatite ultra-thin layer on gold surface and its application for quartz crystal inicrobalance technique [J]. Biomaterials,2006,27(33):5748-5754. doi: 10.1016/j.biomaterials.2006.07.029
    [4] SIGAL G B, MRKSICH M, WHITESIDES G M. Effect of surface wettability on the adsorption of proteins and detergents [J]. J Am Chem Soc,1998,120(14):3464-3473. doi: 10.1021/ja970819l
    [5] PSARRA E, KONIG U, UEDA Y, et al. Nanostructured biointerfaces: Nanoarchitectonics of thermoresponsive polymer brushes impact protein adsorption and cell adhesion [J]. ACS Appl Mater Interfaces,2015,7(23):12516-12529. doi: 10.1021/am508161q
    [6] ADAMCZYK Z, BARBASZ J, CIESLA M. Mechanisms of fibrinogen adsorption at solid substrates [J]. Langmuir,2011,27(11):6868-6878. doi: 10.1021/la200798d
    [7] WASILEWSKA M, ADAMCZYK Z, SADOWSKA M, et al. Mechanisms of fibrinogen adsorption on silica sensors at various pHs: Experiments and theoretical modeling [J]. Langmuir,2019,35(35):11275-11284. doi: 10.1021/acs.langmuir.9b01341
    [8] WASILEWSKA M, ADAMCZYK Z. Fibrinogen adsorption on mica studied by AFM and in situ streaming potential measurements [J]. Langmuir,2011,27(2):686-696. doi: 10.1021/la102931a
    [9] YIGIT C, KANDUC M, BALLAUFF M, et al. Interaction of charged patchy protein models with like-charged polyelectrolyte brushes [J]. Langmuir,2017,33(1):417-427. doi: 10.1021/acs.langmuir.6b03797
    [10] FLICK M J, DU X L, WITTE D P, et al. Leukocyte engagement of fibrin(ogen) via the integrin receptor αmβ2/Mac-1 is critical for host inflammatory response in vivo [J]. J Clin Invest,2004,113(11):1596-1606. doi: 10.1172/JCI20741
    [11] DELCROIX M F, HUET G L, CONARD T, et al. Design of mixed PEO/PAA brushes with switchable properties toward protein adsorption [J]. Biomacromolecules,2013,14(1):215-225. doi: 10.1021/bm301637h
    [12] DELCROIX M F, DEMOUSTIER-CHAMPAGNE S, DUPONT-GILLAIN C C. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes [J]. Langmuir,2014,30(1):268-277. doi: 10.1021/la403891k
    [13] BRATEK-SKICKI A, ELOY P, MORGA M, et al. Reversible protein adsorption on mixed PEO/PAA polymer brushes: Role of ionic strength and PEO content [J]. Langmuir,2018,34(9):3037-3048. doi: 10.1021/acs.langmuir.7b04179
    [14] 高翔, 罗静, 钱佳怡, 等. 聚乙二醇型超支化聚酯胺的制备及表征 [J]. 功能高分子学报,2020,33(2):187-193.

    GAO X, LUO J, QIAN J Y, et al. Preparation and characterization of hyperbranched poly(amino-ester) with poly(ethylene glycol) [J]. Journal of Functional Polymers,2020,33(2):187-193.
    [15] KIM S, GIM T, KANG S M. Versatile, tannic acid-mediated surface PEGylation for marine antifouling applications [J]. ACS Appl Mater Interfaces,2015,7(12):6412-6416. doi: 10.1021/acsami.5b01304
    [16] KIM S, GIM T, JEONG Y, et al. Facile construction of robust multilayered PEG films on polydopamine-coated solid substrates for marine antifouling applications [J]. ACS Appl Mater Interfaces,2018,10(9):7626-7631. doi: 10.1021/acsami.7b07199
    [17] GOH S C, LUAN Y, WANG X, et al. Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates [J]. J Mater Chem B,2018,6(6):940-949. doi: 10.1039/C7TB02636F
    [18] HU Y, JIN J, HAN Y Y, et al. Study of fibrinogen adsorption on poly(ethylene glycol)-modified surfaces using a quartz crystal microbalance with dissipation and a dual polarization interferometry [J]. Rsc Adv,2014,4(15):7716-7724. doi: 10.1039/c3ra46934d
    [19] ZHANG Z, FINLAY J A, WANG L F, et al. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings [J]. Langmuir,2009,25(23):13516-13521. doi: 10.1021/la901957k
    [20] HEMENWAY J N, CARVALHO T C, RAO V M, et al. Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers [J]. J Pharm Sci,2012,101(9):3305-3318. doi: 10.1002/jps.23198
    [21] VERBRAEKEN B, MONNERY B D, LAVA K, et al. The chemistry of poly(2-oxazoline)s [J]. Eur Polym J,2017,88:451-469. doi: 10.1016/j.eurpolymj.2016.11.016
    [22] TANG P, di CIO S, WANG W, et al. Surface-initiated poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes [J]. Langmuir,2018,34(34):10019-10027. doi: 10.1021/acs.langmuir.8b01682
    [23] MORGESE G, GOMBERT Y, RAMAKRISHNA S N, et al. Mixing poly(ethylene glycol) and poly(2-alkyl-2-oxazoline)s enhances hydration and viscoelasticity of polymer brushes and determines their nanotribological and antifouling properties [J]. ACS Appl Mater Interfaces,2018,10(48):41839-41848. doi: 10.1021/acsami.8b17193
    [24] de FAZIO A F, MORGESE G, MOGNATO M, et al. Robust and biocompatible functionalization of ZnS nanoparticles by catechol-bearing poly(2-methyl-2-oxazoline)s [J]. Langmuir,2018,34(38):11534-11543. doi: 10.1021/acs.langmuir.8b02287
    [25] LORSON T, LUBTOW M M, WEGENER E, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update [J]. Biomaterials,2018,178:204-280. doi: 10.1016/j.biomaterials.2018.05.022
    [26] PAN C, LIU X, GONG K, et al. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption [J]. J Mater Chem B,2018,6(4):556-567. doi: 10.1039/C7TB02209C
    [27] GONG K, PAN C, HE K, et al. Influence of poly(acrylic acid) grafting density on switchable protein adsorption/desorption of poly(2-methyl-2-oxazoline)/poly(acrylic acid) mixed brushes [J]. J Appl Polym Sci,2019,136(42):48135.
    [28] TAUHARDT L, FRANT M, PRETZEL D, et al. Amine end-functionalized poly(2-ethyl-2-oxazoline) as promising coating material for antifouling applications [J]. J Mater Chem B,2014,2(30):4883-4893. doi: 10.1039/C4TB00193A
    [29] WU J H, DIAMOND S L. A Fluorescence quench and dequench assay of fibrinogen polymerization, fibrinogenolysis, or fibrinolysis [J]. Anal Biochem,1995,224(1):83-91. doi: 10.1006/abio.1995.1011
    [30] MUNAWEERA I, ALIEV A, BALKUS K J. Electrospun cellulose acetate-garnet nanocomposite magnetic fibers for bioseparations [J]. Acs Appl Mater Inter,2014,6(1):244-251. doi: 10.1021/am404066g
    [31] BARRANCO F T, DAWSON H E. Influence of aqueous pH on the interfacial properties of coal tar [J]. Environ Sci Technol,1999,33(10):1598-1603. doi: 10.1021/es980196r
    [32] SVOBODA J, SEDLACEK O, RIEDEL T, et al. Poly(2-oxazoline)s one-pot polymerization and surface coating: From synthesis to antifouling properties out-performing poly(ethylene oxide) [J]. Biomacromolecules,2019,20(9):3453-3463. doi: 10.1021/acs.biomac.9b00751
    [33] MORGESE G, VERBRAEKEN B, RAMAKRISHNA S N, et al. Chemical design of non-ionic polymer brushes as biointerfaces: Poly(2-oxazine)s outperform both poly(2-oxazoline)s and PEG [J]. Angew Chem Int Edit,2018,57(36):11667-11672. doi: 10.1002/anie.201805620
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  532
  • HTML全文浏览量:  313
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 网络出版日期:  2021-03-04
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回