高级检索

  • ISSN 1008-9357
  • CN 31-1633/O6

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸软骨素类可注射水凝胶体系及其凝胶化机制

王芹 邱钰智 乔韡华 董念国 杨亚江

王芹, 邱钰智, 乔韡华, 董念国, 杨亚江. 硫酸软骨素类可注射水凝胶体系及其凝胶化机制[J]. 功能高分子学报, 2021, 34(3): 243-259. doi: 10.14133/j.cnki.1008-9357.20200811001
引用本文: 王芹, 邱钰智, 乔韡华, 董念国, 杨亚江. 硫酸软骨素类可注射水凝胶体系及其凝胶化机制[J]. 功能高分子学报, 2021, 34(3): 243-259. doi: 10.14133/j.cnki.1008-9357.20200811001
WANG Qin, QIU Yuzhi, QIAO Weihua, DONG Nianguo, YANG Yajiang. Gelation Systems and Mechanisms of Chondroitin Sulfate-Based Injectable Hydrogels[J]. Journal of Functional Polymers, 2021, 34(3): 243-259. doi: 10.14133/j.cnki.1008-9357.20200811001
Citation: WANG Qin, QIU Yuzhi, QIAO Weihua, DONG Nianguo, YANG Yajiang. Gelation Systems and Mechanisms of Chondroitin Sulfate-Based Injectable Hydrogels[J]. Journal of Functional Polymers, 2021, 34(3): 243-259. doi: 10.14133/j.cnki.1008-9357.20200811001

硫酸软骨素类可注射水凝胶体系及其凝胶化机制

doi: 10.14133/j.cnki.1008-9357.20200811001
基金项目: 国家自然科学基金重点项目(81930052);国家自然科学基金面上项目(51473057)
详细信息
    作者简介:

    王芹,生物医学工程博士,华中科技大学化学与化工学院教授。主要研究方向为用于肿瘤治疗和诊断的以及组织工程用生物医用高分子水凝胶。具体从事以下几方面研究:(1)刺激响应性、靶向性纳米载药系统;(2)多功能可注射血管栓塞材料;(3)微流控可控制备和组装技术;(4)心脏瓣膜和软骨修复用水凝胶植入材料

    通讯作者:

    王 芹(1971—),女,博士,教授,主要研究方向为生物医用高分子水凝胶。E-mail:qwang@hust.edu.cn

  • 中图分类号: 0636.1

Gelation Systems and Mechanisms of Chondroitin Sulfate-Based Injectable Hydrogels

  • 摘要: 硫酸软骨素是一种硫酸化糖胺聚糖类天然多糖,广泛分布于动物组织的细胞外基质和细胞表面,具有促进软骨生长、调控生长因子、加快伤口愈合等多种生物功能。近年来,基于硫酸软骨素良好的生物活性、生物相容性和生物降解性,硫酸软骨素类可注射水凝胶作为一种新型生物材料受到了广泛关注,尤其是在组织工程、药物输送和细胞治疗等生物医用领域的应用已有较多研究。侧重综述了国内外发展的基于硫酸软骨素的可注射水凝胶的凝胶化体系、凝胶化机制和凝胶改性方法。重点介绍了基于物理热诱导的凝胶化,以及通过形成席夫碱反应、点击化学反应、形成酰胺键和光交联等化学交联、以及酶交联等形成三维网络结构的方式,并综述了调控体系凝胶化时间、力学性能和组织黏附性的方法。最后对硫酸软骨素可注射水凝胶作为新型生物材料的发展方向进行了展望。

     

  • 图  1  几种典型ChS的化学结构式[20]

    Figure  1.  Chemical structure of typical ChS[20]

    图  2  ChS类可注射水凝胶前体材料及相关交联反应:(a)基于氧化硫酸软骨素的形成席夫碱的反应;(b)基于EDC/NHS活化的ChS相关化学交联,包括迈克尔加成反应、DA反应和酶偶联介导的交联;(c)甲基丙烯酸酯化的ChS;(d)丙烯酸改性的ChS

    Figure  2.  Pre-polymers and relative cross-linking reactions involved in ChS-based injectable hydrogels:(a)Schiff′s base formation based on OChS;(b)Relative cross-linking chemistry based on EDC/NHS-activated ChS, including Michael addition reaction, DA reaction, and enzymatic coupling mediated cross-linking;(c)Methacrylate modified ChS;(d)Acrylic modified ChS

    图  3  制备ChS-ADH-g-PNIPAM的路线图[46]

    Figure  3.  Scheme of the preparation of ChS-ADH-g-PNIPAM[46]

    图  4  可注射的TGM/ChS-ADH/ChS-NHS在水凝胶中的化学交联反应[51]

    Figure  4.  Chemical cross-linking reactions in the injectable TGM/ChS-ADH/ChS-NHS hydrogel[51]

    图  5  可注射的ChS-gelatin水凝胶制备示意图[45, 75]

    Figure  5.  Scheme of the preparation of the injectable ChS-gelatin hydrogel[45, 75]

    图  6  酶催化交联的包封BMSCs的ChS/HA可注射水凝胶的制备路线[63]

    Figure  6.  Synthesis route of BMSCs-laden ChS/HA injectable hydrogel with enzyme-catalyzed crosslinking[63]

    表  1  ChS类可注射水凝胶体系、凝胶化机制、凝胶化时间和凝胶的应用

    Table  1.   Precursor polymers, gelation mechanism, gelation time and applications of ChS-based injectable hydrogels

    Precursor polymerGelation mechanismGelation timePotential applicationRef.
    ChS-ADH-g-PNIPAMThermo-gelation37 ℃, 70—90 sCell therapy[46]
    PNIPAM-g-ChSThermo-gelation5%, 37 ℃, no dataNucleus pulposus regeneration[50]
    TGM/ChS-NHS/ChS-ADHThermo-gelation, amide linkage and hydrazide-epoxy coupling37 ℃, <10 min/[51]
    F127/ChSThermo-gelation37 ℃, <90 sRecovery of injured cartilage[36]
    OChS/SCSchiff′s base formation37 ℃, 30—50 sCell therapy and tissue engineering[52]
    OChS/HBCSchiff′s base formation4 ℃, 1—5 minCartilage tissue engineering[39]
    CMC/OChS/CMsSchiff′s base formation37 ℃, <100 sCartilage tissue engineering[53]
    ChS-ADH/OXPLSchiff′s base formation37 ℃, 22—238 s, depending on the componentCell delivery scaffold for cartilage tissue engineering[54]
    ChS-acrylate/gelatin-TCEPMichael addition reaction37 ℃, <28 minDrug delivery and tissue engineering[45]
    PAMAM@PNIPAM/ChS-F/PEG-AMIThermo-gelation and DA reaction37 ℃, <90 sBone tissue engineering[55]
    F127@ChS/PEG-AMIThermo-gelation and DA reaction37 ℃, 40—140 s,depending on the concentration of PF127@ChSCranial bone tissue engineering[41]
    SA/F127@ChS-PEGSchiff′s base formation and DA reaction37 ℃, 70—80 sBone tissue engineering[56]
    PEG-(NH26 /ChS-NHSAmide linkage37 ℃, 49±2 sWound healing and regenerative medicine[57]
    Col I/ChS-NHSAmide linkage37 ℃, 150—200 sCell delivery and tissue engineering[58]
    Col II/ChS-NHSAmide linkage37 ℃, 5—15 sCartilage tissue engineering[59]
    Col II/ChS-NHSAmide linkage37 ℃, 6 minNucleus pulposus regeneration[43]
    EDAG-ChSAmide linkage37 ℃, 9 minCartilage tissue regeneration[60]
    mChS/PNIPAMFree radical polymerization initiated
    by UV light
    320—390 nm(10 mW/ cm2), 3 minAdipose tissue engineering[61]
    ChS/Fe3+Dynamic coordination bond<10 sTissue adhesives[44]
    ChS-TA/CMP-TAEnzyme-catalyzed cross-linkingHRP/H2O2, 37 ℃, 36—287 s,depending on the mass ratio of CMP-TA to ChS-TACartilage repair[62]
    ChS-TA/HA-TAEnzyme-catalyzed cross-linkingHRP/H2O2, 37 ℃, 15 sBone repair and regeneration[63]
    F127@ChS-PEG-OChSSchiff′s base formation and DA reaction37 ℃, 65 sCranial bone tissue engineering[64]
    ChS: Chondroitin sulfate; ADH: Adipic dihydrazide; PNIPAM: Poly(N-isopropylacrylamide); TGM: PNIPAM-based thermogelling macromer; NHS: N-hydroxysuccinimide; F127: Pluronic F127; GAG: Glycosaminoglycan; HA: Hyaluronic acid; OChS: Oxidized chondroitin sulfate; SC: N-succinyl-chitosan; HBC: Hydroxybutyl chitosan; CMC: Carboxymethyl chitosan; CMs: Chitosan-based microspheres; OXPL: Oxidized pullulan; TCEP: Tri(carboxyethyl)phosphine; F: Furfurylamine; AMI: Maleimido; PEG: Poly(ethylene glycol); PAMAM: Polyamidoamine; SA: Sodium alginate; PEG-(NH26: Six arm polyethylene glycol amine; Col I : Collagen type I; Col II: Collagen type II; EDAG: Ethylenediamine graphene; mChS: Methacrylated chondroitin sulphate; CMP: Carboxymethyl pullulan; TA: Tyramine
    下载: 导出CSV
  • [1] FAKHARI A, SUBRAMONY J A. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery [J]. Journal of Controlled Release,2015,220:465-475. doi: 10.1016/j.jconrel.2015.11.014
    [2] NOROUZI M, NAZARI B, MILLER D W. Injectable hydrogel-based drug delivery systems for local cancer therapy [J]. Drug Discovery Today,2016,21(11):1835-1849. doi: 10.1016/j.drudis.2016.07.006
    [3] YU S J, HE C L, CHEN X S. Injectable hydrogels as unique platforms for local chemotherapeutics-based combination antitumor therapy [J]. Macromolecular Bioscience,2018,18(12):1800240. doi: 10.1002/mabi.201800240
    [4] DIMATTEO R, DARLING N J, SEGURA T. In situ forming injectable hydrogels for drug delivery and wound repair [J]. Advanced Drug Delivery Reviews,2018,127:167-184. doi: 10.1016/j.addr.2018.03.007
    [5] LOKHANDE G, CARROW J K, THAKUR T, et al. Nanoengineered injectable hydrogels for wound healing application [J]. Acta Biomaterialia,2018,70:35-47. doi: 10.1016/j.actbio.2018.01.045
    [6] SIVASHANMUGAM A, KUMAR R A, PRIYA M V, et al. An overview of injectable polymeric hydrogels for tissue engineering [J]. European Polymer Journal,2015,72:543-565. doi: 10.1016/j.eurpolymj.2015.05.014
    [7] PORTNOV T, SHULIMZON T R, ZILBERMAN M. Injectable hydrogel-based scaffolds for tissue engineering applications [J]. Reviews in Chemical Engineering,2017,33(1):91-107.
    [8] LI Y, RODRIGUES J, TOMAS H. Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications [J]. Chemical Society Reviews,2012,41(6):2193-2221. doi: 10.1039/C1CS15203C
    [9] BAE K H, WANG L S, KURISAWA M. Injectable biodegradable hydrogels: Progress and challenges [J]. Journal of Materials Chemistry B,2013,1(40):5371-5388. doi: 10.1039/c3tb20940g
    [10] PERTICI V, TRIMAILLE T, GIGMES D. Inputs of macromolecular engineering in the design of injectable hydrogels based on synthetic thermoresponsive polymers [J]. Macromolecules,2020,53(2):682-692. doi: 10.1021/acs.macromol.9b00705
    [11] NI Z P, YU H J, WANG L, et al. Recent research progress on polyphosphazene-based drug delivery systems [J]. Journal of Materials Chemistry B,2020,8(8):1555-1575. doi: 10.1039/C9TB02517K
    [12] LEI J F, LI X Y, WANG S, et al. Facile fabrication of biocompatible gelatin-based self-healing hydrogels [J]. ACS Applied Polymer Materials,2019,1(6):1350-1358. doi: 10.1021/acsapm.9b00143
    [13] MANO J F, SILVA G A, AZEVEDO H S, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends [J]. Journal of the Royal Society Interface,2007,4(17):999-1030. doi: 10.1098/rsif.2007.0220
    [14] NEZHAD-MOKHTARI P, GHORBANI M, ROSHANGAR L, et al. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods [J]. International Journal of Biological Macromolecules,2019,139:760-772. doi: 10.1016/j.ijbiomac.2019.08.047
    [15] CHOU P Y, CHEN S H, CHEN C H, et al. Thermo-responsive in-situ forming hydrogels as barriers to prevent post-operative peritendinous adhesion [J]. Acta Biomaterialia,2017,63:85-95. doi: 10.1016/j.actbio.2017.09.010
    [16] WANG Q, XU H B, YANG X L, et al. Drug release behavior from in situ gelatinized thermosensitive nanogel aqueous dispersions [J]. International Journal of Pharmaceutics,2008,361(1-2):189-193. doi: 10.1016/j.ijpharm.2008.05.011
    [17] ZHAO Y B, ZHENG C S, WANG Q, et al. Permanent and peripheral embolization: Temperature-sensitive P(N-isopropylacrylamide-co-butyl methylacrylate) nanogel as a novel blood-vessel-embolic material in the interventional therapy of liver tumors [J]. Advanced Functional Materials,2011,21(11):2035-2042. doi: 10.1002/adfm.201002510
    [18] RADHAKRISHNAN J, SUBRAMANIAN A, KRISHNAN U M, et al. Injectable and 3D bioprinted polysaccharide hydrogels: From cartilage to osteochondral tissue engineering [J]. Biomacromolecules,2017,18(1):1-26. doi: 10.1021/acs.biomac.6b01619
    [19] LIU J, LI J, YU F, et al. In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis [J]. International Journal of Biological Macromolecules,2020,147:653-666. doi: 10.1016/j.ijbiomac.2020.01.005
    [20] ABASALIZADEH F, MOGHADDAM S V, ALIZADEH E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting [J]. Journal of Biological Engineering,2020,14(1):8. doi: 10.1186/s13036-020-0227-7
    [21] SUGAHARA K, YAMADA S. Potential therapeutic application of chondroitin sulfate/dermatan sulfate [J]. Current Drug Discovery Technologies,2008,5(4):289-301. doi: 10.2174/157016308786733564
    [22] ALINEJAD Y, ADOUNGOTCHODO A, HUI E, et al. An injectable chitosan/chondroitin sulfate hydrogel with tunable mechanical properties for cell therapy/tissue engineering [J]. International Journal of Biological Macromolecules,2018,113:132-141. doi: 10.1016/j.ijbiomac.2018.02.069
    [23] SHARMA S, SWETHA K L, ROY A. Chitosan-chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds [J]. International Journal of Biological Macromolecules,2019,132:97-108. doi: 10.1016/j.ijbiomac.2019.03.186
    [24] USTYUZHANINA N E, BILAN M I, PANINA E G, et al. Structure and anti-inflammatory activity of a new unusual fucosylated chondroitin sulfate from cucumaria djakonovi [J]. Marine Drugs,2018,16(10):389. doi: 10.3390/md16100389
    [25] BOUGATEF H, KRICHEN F, CAPITANI F, et al. Chondroitin sulfate/dermatan sulfate from corb (Sciaena umbra) skin: Purification, structural analysis and anticoagulant effect [J]. Carbohydrate Polymers,2018,196:272-278. doi: 10.1016/j.carbpol.2018.05.019
    [26] ZHU W M, JI Y, WANG Y, et al. Structural characterization and in vitro antioxidant activities of chondroitin sulfate purified from Andrias davidianus cartilage [J]. Carbohydrate Polymers,2018,196:398-404. doi: 10.1016/j.carbpol.2018.05.047
    [27] ILIEVA K M, CHEUNG A, MELE S, et al. Chondroitin sulfate proteoglycan 4 and its potential as an antibody immunotherapy target across different tumor types [J]. Frontiers in Immunology,2018,8:1911. doi: 10.3389/fimmu.2017.01911
    [28] HATANO S, WATANABE H. Regulation of macrophage and dendritic cell function by chondroitin sulfate in innate to antigen-specific adaptive immunity [J]. Frontiers in Immunology,2020,11:232. doi: 10.3389/fimmu.2020.00232
    [29] DEANGELIS P L. Glycosaminoglycan polysaccharide biosynthesis and production: Today and tomorrow [J]. Applied Microbiology and Biotechnology,2012,94(2):295-305. doi: 10.1007/s00253-011-3801-6
    [30] 崔颖, 赵瑛. 硫酸软骨素眼用温敏凝胶的制备与质量考察 [J]. 中国药师,2020,23(4):651-654. doi: 10.3969/j.issn.1008-049X.2020.04.010

    CUI Y, ZHAO Y. Preparation and quality evaluation of chondroitin sulfate ophthalmic thermosensitive gels [J]. China Pharmacist,2020,23(4):651-654. doi: 10.3969/j.issn.1008-049X.2020.04.010
    [31] KOWITSCH A, ZHOU G Y, GROTH T. Medical application of glycosaminoglycans: A review [J]. Journal of Tissue Engineering and Regenerative Medicine,2018,12(1):E23-E41. doi: 10.1002/term.2398
    [32] XIAO Y, LI P, CHENG Y, et al. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates [J]. International Journal of Pharmaceutics, 465(1-2): 143-158
    [33] CHEN W Q, LIU Y, LIANG X, et al. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery [J]. Acta Biomaterialia,2017,57:238-250. doi: 10.1016/j.actbio.2017.05.030
    [34] KHAN A R, YANG X Y, DU X Y, et al. Chondroitin sulfate derived theranostic and therapeutic nanocarriers for tumor-targeted drug delivery [J]. Carbohydrate Polymers,2020,233:115837. doi: 10.1016/j.carbpol.2020.115837
    [35] YANG J, SHEN M Y, WEN H L, et al. Recent advance in delivery system and tissue engineering applications of chondroitin sulfate [J]. Carbohydrate Polymers,2020,230:115650. doi: 10.1016/j.carbpol.2019.115650
    [36] LI Y, CAO J, HAN S, et al. ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis [J]. Artificial Cells Nanomedicine and Biotechnology,2018,46:152-160. doi: 10.1080/21691401.2018.1452752
    [37] SAHIN S, TUNCEL S A, SALIMI K, et al. Novel Biomaterials for Regenerative Medicine [M]. Singapore: Springer, 2018: 183-196.
    [38] RADHAKRISHNAN J, MANIGANDAN A, CHINNASWAMY P, et al. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration [J]. Biomaterials,2018,162:82-98. doi: 10.1016/j.biomaterials.2018.01.056
    [39] LI C, WANG K, ZHOU X, et al. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering [J]. Biomedical Materials,2019,14(2):025006. doi: 10.1088/1748-605X/aaf8ed
    [40] ZHOU F, HONG Y, ZHANG X, et al. Tough hydrogel with enhanced tissue integration and in situ forming capability for osteochondral defect repair [J]. Applied Materials Today,2018,13:32-44. doi: 10.1016/j.apmt.2018.08.005
    [41] BAI X, LU S, CAO Z, et al. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair [J]. Carbohydrate Polymers,2017,166:123-130. doi: 10.1016/j.carbpol.2017.02.062
    [42] WILTSEY C, CHRISTIANI T, WILLIAMS J, et al. Thermogelling bioadhesive scaffolds for intervertebral disk tissue engineering: Preliminary in vitro comparison of aldehyde-based versus alginate microparticle-mediated adhesion [J]. Acta Biomaterialia,2015,16:71-80. doi: 10.1016/j.actbio.2015.01.025
    [43] ZHOU X, WANG J, FANG W, et al. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus [J]. Acta Biomaterialia,2018,71:496-509. doi: 10.1016/j.actbio.2018.03.019
    [44] DAI C, ZHOU Z, GUAN Z, et al. A multifunctional metallohydrogel with injectability, self-healing, and multistimulus-responsiveness for bioadhesives [J]. Macromolecular Materials and Engineering,2018,303(10):1800305. doi: 10.1002/mame.201800305
    [45] BANG S, JUNG U W, NOH I. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering [J]. Tissue Engineering and Regenerative Medicine,2018,15(1):25-35. doi: 10.1007/s13770-017-0089-3
    [46] LU S, LI B, NI B, et al. Thermoresponsive injectable hydrogel for three-dimensional cell culture: Chondroitin sulfate bioconjugated with poly(N-isopropylacrylamide) synthesized by RAFT polymerization [J]. Soft Matter,2011,7(22):10763-10772. doi: 10.1039/c1sm06053h
    [47] KO D Y, SHINDE U P, YEON B, et al. Recent progress of in situ formed gels for biomedical applications [J]. Progress in Polymer Science,2013,38(3-4):672-701. doi: 10.1016/j.progpolymsci.2012.08.002
    [48] TEIXEIRA L S M, FEIJEN J, BLITTERSWIJK C A V, et al. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering [J]. Biomaterials,2012,33(5):1281-1290. doi: 10.1016/j.biomaterials.2011.10.067
    [49] HARTLIEB M, KEMPE K, SCHUBERT U S. Covalently cross-linked poly(2-oxazoline) materials for biomedical applications: From hydrogels to self-assembled and templated structures [J]. Journal of Materials Chemistry B,2015,3(4):526-538. doi: 10.1039/C4TB01660B
    [50] WILTSEY C, KUBINSKI P, CHRISTIANI T, et al. Characterization of injectable hydrogels based on poly(N-isopropylacrylamide)-g-chondroitin sulfate with adhesive properties for nucleus pulposus tissue engineering [J]. Journal of Materials Science: Materials in Medicine,2013,24(4):837-847. doi: 10.1007/s10856-013-4857-x
    [51] KIM Y S, GUO J L, LAM J, et al. Synthesis of injectable, thermally responsive, chondroitin sulfate-cross-linked poly(N-isopropylacrylamide) hydrogels [J]. ACS Biomaterials Science & Engineering,2019,5(12):6405-6413.
    [52] LU S, GAO C, XU X, et al. Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation [J]. ACS Applied Materials & Interfaces,2015,7(23):13029-13037.
    [53] FAN M, MA Y, TAN H, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering [J]. Materials Science & Engineering C: Materials for Biological Applications,2017,71:67-74.
    [54] LI T, SONG X, WENG C, et al. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering [J]. Applied Materials Today,2018,10:173-183. doi: 10.1016/j.apmt.2017.12.002
    [55] BAI X, LU S, CAO Z, et al. Self-reinforcing injectable hydrogel with both high water content and mechanical strength for bone repair [J]. Chemical Engineering Journal,2016,288:546-556. doi: 10.1016/j.cej.2015.12.021
    [56] BAI X, LU S Y, LIU H D, et al. Polysaccharides based injectable hydrogel compositing bio-glass for cranial bone repair [J]. Carbohydrate Polymers,2017,175:557-564. doi: 10.1016/j.carbpol.2017.08.020
    [57] STREHIN I, NAHAS Z, ARORA K, et al. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel [J]. Biomaterials,2010,31(10):2788-2797. doi: 10.1016/j.biomaterials.2009.12.033
    [58] GAO Y, KONG W, LI B, et al. Fabrication and characterization of collagen-based injectable and self-crosslinkable hydrogels for cell encapsulation [J]. Colloids and Surfaces B: Biointerfaces,2018,167:448-456. doi: 10.1016/j.colsurfb.2018.04.009
    [59] GAO Y, LI B, KONG W, et al. Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery [J]. International Journal of Biological Macromolecules,2018,118:2014-2020. doi: 10.1016/j.ijbiomac.2018.07.079
    [60] TANG C, HOLT B D, WRIGHT Z M, et al. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration [J]. Journal of Materials Chemistry B,2019,7(15):2442-2453. doi: 10.1039/C8TB02967A
    [61] BROWN C F C, YAN J, HAN T T Y, et al. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels [J]. Biomedical Materials,2015,10(4):045010. doi: 10.1088/1748-6041/10/4/045010
    [62] CHEN F, YU S, LIU B, et al. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering [J]. Scientific Reports,2016,6:200014.
    [63] ZHANG Y J, CHEN H, ZHANG T T, et al. Injectable hydrogels from enzyme-catalyzed crosslinking as BMSCs-laden scaffold for bone repair and regeneration [J]. Materials Science & Engineering C: Materials for Biological Applications,2019,96:841-849.
    [64] LU S, BAI X, LIU H, et al. An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair [J]. Journal of Materials Chemistry B,2017,5(20):3739-3748. doi: 10.1039/C7TB00776K
    [65] SULTANA T, GWON J G, LEE B T. Thermal stimuli-responsive hyaluronic acid loaded cellulose based physical hydrogel for post-surgical de novo peritoneal adhesion prevention [J]. Materials Science & Engineering C: Materials for Biological Applications,2020,110:110661.
    [66] SANCHEZ-MORENO P, DE-VICENTE J, NARDECCHIA S, et al. Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications [J]. Nanomaterials,2018,8(11):935. doi: 10.3390/nano8110935
    [67] WANG H, AGARVVAL P, ZHAO S T, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells [J]. Biomaterials,2015,72:74-89. doi: 10.1016/j.biomaterials.2015.08.048
    [68] LI Y J, PAN W H, ZHENG C H, et al. A diarylethene derived Fe3+ fluorescent chemosensor and its application in wastewater analysis [J]. Journal of Photochemistry and Photobiology A: Chemistry,2020,389:112282. doi: 10.1016/j.jphotochem.2019.112282
    [69] LI S D, CHEN N, LI X P, et al. Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care [J]. Advanced Functional Materials,2020,30:2000130. doi: 10.1002/adfm.202000130
    [70] LI J, YU F, CHEN G, et al. Moist-retaining, self-recoverable, bioadhesive, and transparent in situ forming hydrogels to accelerate wound healing [J]. ACS Applied Materials & Interfaces,2020,12(2):2023-2038.
    [71] DU Y, LI L, PENG H T, et al. A spray-filming self-healing hydrogel fabricated from modified sodium alginate and gelatin as a bacterial barrier [J]. Macromolecular Bioscience,2020,20(2):1900303. doi: 10.1002/mabi.201900303
    [72] ZHANG X C, CHENG L, FENG L T, et al. Thermoresponsive dendronized chitosan-based hydrogels as injectable stem cell carriers [J]. Polymer Chemistry,2019,10(18):2305-2315. doi: 10.1039/C9PY00256A
    [73] NAIR D P, PODGORSKI M, CHATANI S, et al. The thiol-michael addition click reaction: A powerful and widely used tool in materials chemistry [J]. Chemistry of Materials,2014,26(1):724-744. doi: 10.1021/cm402180t
    [74] GASOSOKAC D, STIVOJEVIC M. Diels-Alder "click" reactions [J]. Current Organic Chemistry,2016,20(21):2211-2221. doi: 10.2174/1385272820666160215235852
    [75] LI G Z, RANDEV R K, SOERIYADI A H, et al. Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts [J]. Polymer Chemistry,2010,1(8):1196-1204. doi: 10.1039/c0py00100g
    [76] STREHIN I, NAHAS Z, ARORA K, et al. A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel [J]. 2010, 31(10): 2788-2797
    [77] ORNELL K J, LOZADA D, PHAN N V, et al. Controlling methacryloyl substitution of chondroitin sulfate: Injectable hydrogels with tunable long-term drug release profiles [J]. Journal of Materials Chemistry B,2019,7(13):2151-2161. doi: 10.1039/C8TB03020K
    [78] SHEN S J, SHEN J Y, SHEN H D, et al. Dual-enzyme crosslinking and post-polymerization for printing of polysaccharide-polymer hydrogel [J]. Frontiers in Chemistry,2020,8:00036. doi: 10.3389/fchem.2020.00036
    [79] WANG X, CHEN S, WU D, et al. Oxidoreductase-initiated radical polymerizations to design hydrogels and micro/nanogels: Mechanism, molding, and applications [J]. Advanced Materials,2018,30(17):1705668. doi: 10.1002/adma.201705668
    [80] MADL C M, HEILSHORN S C. Rapid Diels-Alder cross-linking of cell encapsulating hydrogels [J]. Chemistry of Materials,2019,31(19):8035-8043. doi: 10.1021/acs.chemmater.9b02485
    [81] KURAPATI R, RUSSIER J, SQUILLACI M A, et al. Dispersibility-dependent biodegradation of graphene oxide by myeloperoxidase [J]. Small,2015,11(32):3985-3994. doi: 10.1002/smll.201500038
    [82] CHRISTIANI T R, TOOMER K, SHEEHAN J, et al. Synthesis of thermogelling poly(N-isopropylacrylamide)-graft-chondroitin sulfate composites with alginate microparticles for tissue engineering [J]. Jove-Journal of Visualized Experiments, 2016, DOI: 10.3791/53704.
    [83] ZHANG C, WU B H, ZHOU Y S, et al. Mussel-inspired hydrogels: From design principles to promising applications [J]. Chemical Society Reviews,2020,49(11):3605-3637. doi: 10.1039/C9CS00849G
    [84] SAIZ-POSEU J, MANCEBO-ARACIL J, NADOR F, et al. The chemistry behind catechol-based adhesion [J]. Angewandte Chemie: International Edition,2019,58(3):696-714. doi: 10.1002/anie.201801063
    [85] 林柏仲, 赵丽, 王宏伟, 等. 生物黏合水凝胶研究进展 [J]. 功能高分子学报,2020,33(2):125-140.

    LIN B Z, ZHAO L, WANG H W, et al. Progress in bioadhesive hydrogels [J]. Journal of Functional Polymers,2020,33(2):125-140.
    [86] HAN L, WANG M, LI P, et al. Mussel-inspired tissue-adhesive hydrogel based on the polydopamine-chondroitin sulfate complex for growth-factor-free cartilage regeneration [J]. ACS Applied Materials & Interfaces,2018,10(33):28015-28026.
    [87] DJERBAL L, LORTAT-JACOB H, KWOK J C F. Chondroitin sulfates and their binding molecules in the central nervous system [J]. Glycoconjugate Journal,2017,34(3):363-376. doi: 10.1007/s10719-017-9761-z
    [88] 郑江, 关瑞章, 黄世玉. 鲟鱼和鲨鱼硫酸软骨素红外光谱特性的比较研究 [J]. 光谱学与光谱分析,2008(1):108-111.

    ZHENG J, GUAN R Z, HUANG S Y. Comparative studies on the characteristics of the fourier-transform infrared spectra between sturgeon and shark chondroitin sulfates [J]. Spectroscopy and Spectral Analysis,2008(1):108-111.
    [89] BASAPPA, MURUGAN S, SUGAHARA K N, et al. Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcoma cells [J]. Glycobiology,2009,19(7):735-742. doi: 10.1093/glycob/cwp041
    [90] JI Y, ZHANG S L, QIAO M, et al. Synthesis of structurally defined chondroitin sulfate: Paving the way to the structure-activity relationship studies [J]. Carbohydrate Polymers,2020,248:116796. doi: 10.1016/j.carbpol.2020.116796
    [91] 姜中雨, 刘仪轩, 冯祥汝, 等. 功能性聚氨基酸纳米凝胶 [J]. 功能高分子学报,2019,32(1):13-27.

    JIANG Z Y, LIU Y X, FENG X R, et al. Functional polypeptide nanogels [J]. Journal of Functional Polymers,2019,32(1):13-27.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1054
  • HTML全文浏览量:  638
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 刊出日期:  2021-06-01

目录

    /

    返回文章
    返回